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Abstract: Steel-concrete composite beam cable-stayed bridge is a complicated system consisting of a composite beam, tower, and
stayed cables. And the composite beam is composed of a steel beam, bridge deck and connectors, which has a different mechanical
behavior from the general beam structure. In a word, the steel-concrete composite beam cable-stayed bridge is characterized by
specific mechanical behavior and has many influencing factors. Thus, its safety analysis often cannot be easily implemented. This
paper aims to study the component reliability of the steel-concrete composite beam based on the stochastic finite element method
(SFEM) and the recognition of main failure modes in the system reliability of the cable-stayed bridge. For the component reliability
of the steel-concrete composite beam, a nonlinear element model with 10 degrees of freedom (DOF) is adopted, which can consider
the particular longitudinal slip effect between the steel and concrete. And the direct differential method (DDM) is used to deduce the
response gradient of the element model. Meanwhile, the tower and the composite beam are considered as beam-column members to
establish their limit state functions in the form of interaction equations. For the recognition of main failure modes in the system
reliability,  this  paper  proposes  the  concept  of  uniformity  of  the  reliability  index  and  the  refinement  strategy  to  improve  the  β-
unzipping method, which can identify the main failure modes or neglect the unnecessary non-main failure modes. Finally, a certain
steel-concrete composite beam cable-stayed bridge is used to verify the effectiveness of the proposed method.

Keywords: Cable-stayed bridge, Direct differentiation method, Interaction equation, Steel-concrete composite beams, Stochastic
finite element method, System reliability, β-unzipping method.

1. INTRODUCTION

The reliability problem with only one failure mode is called the component reliability (failure mode and failure
component will be considered synonymous throughout this paper). Meanwhile, the reliability problem with various
failure  modes  is  called  the  system reliability.  The  system reliability  is  one  of  the  most  important  and  complicated
theories of reliability. The system reliability considers the component reliability as the premise. Thus, the numerical
computation method of the component reliability that will be adopted is the basis for the system reliability. At present,
the numerical computation methods of the component reliability generally include the stochastic finite element method
(SFEM), response surface method, and Monte Carlo (MC) stochastic simulation method. SFEM can effectively process
the stochastic properties of the related variables involved in structural analysis. After more than 20 years of research,
SFEM has made significant progress and is now widely applied in the field of engineering structure. SFEM mainly
includes  perturbation  SFEM  [1],  Neumann  SFEM  [2],  and  structural  response  gradient  method  [3,  4].  The  most
representative SFEM is the direct differential method (DDM) [5]. This method is the one of most accurate and effective
methods  to  calculate  the  structural  response  gradient,  since  its  accuracy  is  considered  the  same  as  the  structural
response. It has been successfully applied in some fields of structural reliability [6 - 9] in recent years.

The most important  problem  about the  system  reliability is  related to  recognizing the  main failure  modes.   At,
present  the  recognition  methods  for the main failure  modes  include  load  branch  bound [12], and β-unzipping  [13],
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increment [10], linear programming [11, 14]. β-unzipping method, which was developed by Thoft-Christensen [13], is
the most representative and more widely applied approach. This method uses the reliability index as a control parameter
to make the branch-and-bound operation. To avoid combination explosion, a reasonable reliability index β is selected as
the bound threshold value at each level of the failure process. The non-main failure model with a small occurrence
probability  is  deleted  in  advance  to  effectively  improve  the  computational  efficiency.  In  recent  years,  various
improvement methods based on β-unzipping have emerged, including the revised β-unzipping method by Dong [15]
and adaptive dynamic β-unzipping method by Yang [16].

As the computing method for the system reliability developed, the computing theories of the system reliability are
used in practical bridges by some scholars. Bruneau [17] analyzed the system reliability of a medium-span cable-stayed
bridge. Based on 14 possible plastic failure modes, first-order second-moment method (FOSM) is used to calculate the
reliability index. This method is not applicable for a large-span cable-stayed bridge with a higher degree of statistical
indeterminacy because it  does not consider the influence of geometric nonlinearity and cannot easily and explicitly
express the structural response. Imai [6] considered the influence of geometric nonlinearity in successfully analyzing
the  system  reliability  in  the  level  2  of  a  suspension  bridge.  The  main  failure  modes  are  not  recognized  in  the
computation. Thus, the final failure series parallel system is huge. Saydam [18] analyzed the system reliability of a
suspension bridge using FOSM and focused on the error of extreme distribution random variable against the system
reliability  based  on  a  simple  limit  state  function  (LSF).  Gokce  [19]  utilized  detection  information  to  establish  a
deterministic finite element model using a movable bridge as the objective and calculated the bridge's system reliability,
which regards truck position as a random variable. Li [20] started from the equivalent extreme event-based principle
under the framework of probability density evolution theory to transform the system reliability problem to a simple
reliability problem.

A steel-concrete composite beam cable-stayed bridge is characterized by a large-span, light weight, fine and light
appearance,  and simple construction.  Thus,  it  has been thoroughly developed over the past  decade.  However,  most
research  on  this  bridge  type  is  focused  on  the  deterministic  structural  analysis,  and  studies  rarely  emphasize  its
reliability (particularly the system reliability) [21 - 25]. Thus, this paper presents new theories and methods to analyze
the component reliability of steel-concrete composite beam and the main failure modes in the system reliability. It also
verifies the result of the analysis by considering a composite cable-stayed bridge as the background of engineering. This
paper provides a more accurate method for the reliability analysis of composite beam cable-stayed bridge, which could
have a role in helping to promote the development of the field of composite bridge safety analysis.

The  remainder  of  this  paper  is  organized  as  follows:  In  Chapter  2,  the  derivation  steps  of  the  steel-concrete
composite beam element gradient are described based on DDM. Chapter 3 shows the LSFs of the composite beam and
tower  in  the  form  of  an  interaction  equation.  Chapter  4  introduces  the  concept  of  reliability  index  uniformity  and
refinement strategy and improves the β-unzipping method. The flow chart of the whole algorithm is also given at the
end of the chapter. Chapter 5 describes the verification of the proposed method using an actual bridge. The last chapter
presents the conclusions.

2. STOCHASTIC FINITE ELEMENT ANALYSIS OF STEEL-CONCRETE COMPOSITE BEAM

2.1. Structural Function Gradient

In finite element analysis, the main structural response, such as the response of internal force or displacement, is
first  obtained  from  the  control  equation.  After  determining  the  main  response,  the  element  strain  or  stress  can  be
identified  from  the  main  structural  response  through  explicit  expression.  The  main  structural  response  is  also  the
function of the basic random variable. Thus, the performance function g  can be written as the function of the main
structural response set d = [d1, d2,...dn] and random variable set θ = [θ1, θ2,...θm]:

(1)

The gradient calculation equation of the performance function g against a certain variable θi (i = 1,.2,...m) is given
as

(2)
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For the nonlinear problem, the equation of the nonlinear structural system can be generally expressed as:

(3)

where Pint denotes the internal force of the element, and Pext denotes the external force.

Taking a partial derivative of a certain variable θi on Eq. (3) yields:

(4)

(5)

Calculating the gradient vector of the performance function G(u) in the standard normal space yields:

(6)

Fig. (1) shows a section of the typical steel-concrete composite beam. The top plate is a concrete bridge deck, and
the bottom joist is a steel I-beam. Both plates are connected with shear connectors. The following basic assumptions are
adopted:

The cross section is symmetrical to the plane defined by x-y coordinate system1.
The vertical lift of the composite beam is not considered (vertical deflections of the bridge deck and steel beam2.
are assumed to be consistent).
The influence of shear deformations is disregarded.3.
The shear connectors are uniformly distributed along the beams.4.

The vertical deflections of the steel beam and bridge deck can be presented by the same vertical displacement when
the vertical lift of the composite beam is not considered. The displacement and the increment of displacement of the
bridge deck and steel beam at iteration time t can be presented as
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where  denotes the tangent stiffness matrix.

Nataf is used to transform θ from the original space to the independent standard normal space u. Thus,
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where  Jθ,  u  denotes  the  Jacobi  matrix,  and   is  obtained  from  can  be

obtained directly from the performance function.  can be determined from the vector set of gradient  of any

random parameter θi based on the Eq. (4). Finally, after obtaining , the first-order second-moment method (FOSM)
which is combined with the advanced HL-RF iterative method is used to calculate the reliability index β.

Based  on  Eqs.  (2)-(4),  it  is  known  that  the  key  of  determining  the  function  gradient  is  to  solve  .  The

following paragraph will discuss the solution of  in the composite beam element.
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Fig. (1). Geometric model.

(7)

where   subscript  S  denotes  the  steel  beam,  and  subscript  c  denotes  the  bridge  deck.  The

longitudinal slip displacement and the increment of displacement at t can be presented as:
(8)

The traditional 8-degree of freedom (DOF) mode (nodes at both sides have 4 DOFs) is not used as the element
mode. As for the 8-DOF mode, the interpolation function of u  is the first-order polynomial, while the interpolation
function of v is third-order polynomial (the interpolation function of v' is second-order polynomial), which will cause
slip locking problem. The method of increasing internal DOF can be used to avoid such problem [26]. Therefore, a
mode with 10-DOF is adopted herein, in which two DOFs are added to the u displacement inside the element (as shown
in Fig. (2). The node displacement and the node increment of displacement at t are given as follows:

Fig. (2). DOF of element.

(9)

The displacement field of the composite beam is {uc, us, v}, and the displacement and the increment of displacement
inside the element at t is presented by the interpolation:

(10)

N, Nuc, Nus, Nuc and Nv, are the interpolation functions. The Green strain increment can be presented as:
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(11)

The  following  equilibrium  equation  is  obtained  by  combining  the  principle  of  virtual  work  with  T.  L  based
incremental method:

(12)

(13)

where BLC and BLS are linear expressions of the Green strain increment, BN denotes the nonlinear expression of the
Green strain increment, and Bf denotes the slip increment. After computing the partial derivative of a certain variable θi

on both sides of Eq. (13), the following equation is finally obtained:

(14)

Eq. (14) is the gradient formula of the composite beam in the level of element. If the nonlinear behavior of material
is considered, Eq. (14) needs to be further analyzed in the level of the section and the level of the material. It should be
noted that different sections and materials will exhibit various gradient formulas [27].

In  the  following paragraph,  the  effectiveness  of  the  above-mentioned method is  verified  by regarding a  simply
supported composite beam as the objective of the study. Fig. (3) shows a simply supported composite beam which is
found in literature [28]. A uniformly distributed load acts on the top member, and a pair of concentrated load, which are
equal and opposite, also act on the center of the top and bottom members along the longitudinal direction.

Fig. (3). Simply supported composite beam under the action of uniformly distributed load and longitudinal concentration load.
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where Pxc and qxc are the corresponding external force and plane force in the x direction acting on the bridge deck,
Pxs  and qxs  are the external  force and plane force in the X direction acting on the steel  beam, and Py  and qy  are the

external force and plane force in the y direction acting on  the  composite beam.  are  the
virtual  displacements  at . For  small
strain  problems,  the  relation  between  the  Kirchhoff  stress  increment  and  Green  strain  increment  is  given  as:

for concrete bridge  deck,  for  steel beam, and  for  connectors.  Finally,  element
internal force Pint can be obtained as

t t
xcu  , t t

xsu  , and t tv   

+t t : t t
xc xc ucu u      N d ; t t

xs xs usu u      N d ; t t
vv v     N d

xc c xcE     
xs s xsE      sKR r    

 int

c s
xc Lc xs Ls fL A A

xA A Rd d d     P B B N ,                    

int

c s

c

s

xc

xs

xc xs
c Lc s LsL A L A

i i i

xc
s f LcL L A

i i

fxs
Ls fL A L L

i i ir

x x

x x

x x x

A A

A

R
A R

E d d E d d
θ θ θ

r
K d d d

θ θ

d d d d
θ θ θ









  
 

  


 

 

 
  

  

   

  

   

d d d

d

P
B B

N B

N
B N

.                       

E =12GPa2

1E =8GPa

2

1

0.05m
4m

0.3m

0.15m

0.05m

1kN/m

12.5kN

37.5kN

12.5kN

37.5kN

 

422   The Open Civil Engineering Journal, 2016, Volume 10 Jia et al.



The top and bottom materials are linearly elastic. The elastic modulus of the top member is 12 GPa, and the elastic
modulus of  the bottom member is  8  GPa.  The stiffness  of  the connectors  is  presented by a  dimensionless  stiffness
coefficient θL [29]:

(15 )

where L refers to the span length; k denotes the stiffness of the connectors; E1 and E2, A1 and A2, and l1 and l2 denote
the elastic modulus, area, and sectional inertia moment of the top and bottom members, respectively; and h denotes the
distance between the centroid of the top and bottom members along the height of the cross section.

The area, inertia moment, elastic modulus of the top and bottom members, stiffness of connectors, and uniformly
distributed load are selected as random variables. The statistics characteristics of the random variables are shown in
Table 1. A1, I1, E1, A2, I2, and E2 of all the elements are assumed to be completely correlated. The performance function
is given as:

Table 1. Statistics characteristics of random variables (A, I, and E refer to the area, inertia moment, and elastic modulus,
respectively; Note: [~] in the table means a range of values).

 Structural members  Random variable  Mean  Coefficient of variation  Distribution type

 Bottom member

 A1(m
2)  7.50×10-3  0.1  Log-normal

 I1(m
4)  1.41×10-5  0.05  Log-normal

 E1(MPa)  8.00×109  0.1  Normal

 Top member

 A2(m
2)  1.50×10-2  0.1  Log-normal

 I2(m
4)  3.13×10-6  0.05  Log-normal

 E2(MPa)  1.20×1010  0.1  Normal
 Connector  E3(MPa)  [0.703~1757.81]  0.1  Normal

 Uniformly distributed load  P(kN/m)  1  0.15  Normal

(16)

where Δ denotes the vertical displacement of mid-span. Suppose that the stiffness coefficient of the connection is αL
= 2 (the corresponding connecting stiffness is k = 2.8215 MPa). By using the proposed method, the following results are
obtained: failure probability Pf = 2.2346×10-4 and reliability index β = 3.5107. To verify the correctness of the result,
MC method is adopted by sampling 107 times. The results obtained from MC method are: Pf = 2.4662×10-4 and β =
3.4844, which are consistent with the results from the proposed method. The effect of the stiffness of connector on
reliability is also analyzed by considering five different stiffness conditions. The result is shown in Table 2. The table
indicates  that  reliability  increases  dramatically  with  an  increase  of  the  stiffness  of  connector.  However,  when  the
stiffness reaches a certain value, the effect of the stiffness of connector on the reliability becomes insignificant.

Table 2. Reliabilities under different stiffness of connector.

 Stiffness  Reliability-β  Stiffness  Reliability-β
  αL = 1  0.4488  αL = 4  7.5187

  αL = 1.5  1.8618  αL = 5  7.9696
 αL = 2  3.5107  αL = 8.43  8.2956

  αL = 2.5  5.0608  αL = 10  8.3247
  αL = 3  6.2512   αL = 20  8.3759

  αL = 3.5  7.0406   αL = 50  8.3906

3. ESTABLISHING LIMIT STATE FUNCTION

Based on the Eq (1), the definition of LSF (g = g (d (θ), θ = 0)) of different member in the cable-stayed bridge is
discussed in this section. A cable-stayed bridge consists of different members, and the structural forms and forces of
these members differ. Thus, their different characteristics should be considered to define the LSF. At present, numerous
methods to define the LSF have been developed. However, some methods just considered the failure of stayed cable,
and some other methods just considered the failures of beam and stayed cable while neglecting the failure of tower.

 2
1 2 2 1 1 2 21/ 1/ / ( )L k E A E A h E I E I L     ,   

 0.025 , , ,g A I E P   ,
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Beam, stayed cable, and tower are the main components of a cable-stayed bridge, any failure of which has a great affect
on the whole structure safety. Thus, these three structural members should be all considered when computing the system
reliability.

Theoretically, the bridge system will not collapse immediately when the beam bears the ultimate load, since plastic
hinges are at work. However, in the operational stage, the beam is the direct bearing member. If damage occurs in the
beam, the traffic will be interrupted. Thus, from a practical perspective, the whole system is considered to be a failure if
any beam element is damaged.

Substantial initial tension is exerted on a stayed cable, which produces greater compressive force in the beam and
tower. Thus, the beam and tower should be regarded as the beam-column members. The ultimate load of the beam is
related to the shape of the cross section, dimensions of all its parts, and loading process. Thus, providing a detailed
expression is difficult.  However, in engineering applications, the convenient interaction equation can be adopted to
calculate the ultimate load, as shown below [30]:

(17)

where P and M denote the axial force and the bending moment respectively, Pu denotes the axial force resistance
without considering the bending moment, and Mu  denotes the bending moment resistance without considering axial
force.

(18)

where Pb
i (θ) and Pbu

i denote the axial force and axial force resistance of the i-th beam element respectively, Mb
i (θ)

and Mbu
i (θ) denote the bending moment and bending moment resistance of the i-th beam element respectively.

The tower, which is a part that supports the mechanical behavior of the whole bridge, plays an important role in
supporting the cable force and the stability of the beam. The occurrence of damage in a tower implies that the balance
system of the entire bridge is destroyed. Thus, if the tower is damaged, the whole system will fail. The tower is also a
beam-column member. The interaction equation can be the basis for obtaining the LSF of the i-th tower element as
follows

(19)

where Pt
i (θ) and Ptu

i (θ) denote the axial force and axial force resistance of the i-th tower element respectively, Mt
i

(θ) and Mtu
i (θ) denote the bending moment and bending moment resistance of the i-th tower element respectively.

The stayed cable differs  from the description above.  The damage on the stayed cable cannot  destroy the whole
bridge. Thus, when individual stayed cables are damaged, the whole system is not considered to be a failure. The failure
of stayed cable in this paper is considered as a brittle failure. The LSF of the ith stayed cable element is given as

(20)

where Fc
i  (θ)  and Tc

i  (θ)  denote the tensile  axial  force and tensile  axial  force resistance of  the i-th stayed cable
element respectively.

4. SEARCH OF MAIN FAILURE MODE

The calculation is extensive when all failure modes (failure components) are selected. At present the acceptable
method is using some particular searching approaches to recognize some main failure modes which have important
contributions to the system reliability. Determining how to accurately and effectively recognize the main failure modes
is  an important  problem.  This  paper  proposes  the  concept  of  uniformity  of  the  reliability  index and the  refinement
strategy based on literature [16] to improve the β-unzipping method. The improvement is described below.

Supposing  that  θ  denotes  the  set  of  random  variables  of  the  bridge,  the  main  structural  response  is  set  to  be
. Thus, the LSF of the i-th beam element can be obtained from Eq. (17):
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4.1. Reliability Analysis in Level 1

The  system  in  Level  1  is  assumed  to  be  composed  of  m  failure  components  (e1,  e2,...m  ).  The  failure  event  of
component  i  in  Level  1  is  presented by Fei

(1),  and the corresponding reliability  index is  βei
(1).  The uniformity of  the

reliability index in this stage is defined as

(21)

(22)

It is supposed that a total of K failure components meet,

(23)

Then  the  K  failure  components  are  selected  as  the  initial  candidate  failure  components  in  Level  1.  Eq.  (23)
preliminarily gives the selection scope of the candidate failure components. A refinement strategy is also proposed to
ensure that the main failure modes are not missing or that unnecessary non-main failure modes are neglected. In other
words, the quantity of components is increased (or decreased) based on the K initial candidate failure components from
Eq.  (23)  to  observe  if  system failure  probability  in  Level  1  is  changed significantly.  First,  calculate  system failure
probability in Level 1 consisting of K candidate failure components (failure system in Level 1 can be considered equal
to the series system formed from these candidate failure components events):

(24)

Now λ failure components are added behind the K-th candidate failure components (etk
) to increase the number of

candidate  failure  components  to  be  K + λ.  The  system failure  probability  Pfk+  λ
(1)  in  Level  1  is  calculated  based  on

Eq.(24). If the following condition is met

(25)

where  denotes a small threshold, then the contributions of the added λ components to system failure probability
can be disregarded. Otherwise, if Eq. (25) is not established, the contributions of these λ components to system failure
probability should be considered, and these λ  components should be selected as new candidate failure components.
Similarly, λ failure components are reduced in the front of etk

 to delete the unnecessary non-main failure modes. Then
the number of candidate failure components is reduced to be K + λ, and the corresponding system failure probability Pfk

where   denote the average value, minimum value, and maximum value of reliabilities of all
the  failure  components  in  Level  1,  respectively.  A  smaller  uniformity  of  reliability  index  indicates  that  the  failure
probability in the system is more unevenly distributed. In this situation, few failure components will have higher failure
probability.  These  failure  components  will  likely  become  candidates  for  being  main  failure  modes  in  the  level  1.
Correspondingly, the initial standard reliability index in the level 1 can be defined as
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is . Remarkably, the calculation of  will involve the numerical computation method. Whether in a series or
parallel  system,  calculating  system  failure  probability  will  be  finally  attributed  to  the  numerical  integration  of  the
multidimensional normal distribution. Generally, when the dimension is larger, carrying out the numerical integration
of the multidimensional normal distribution is very difficult. This paper adopts the method of equivalent linear safety
margin (ELSM) [31].

(1)

k̂
fP (1)

k̂
fP

+λ
(1) is calculated. Equation (25) will be used again to be the criterion for selecting candidate failure components.

The  method  above  is  used  to  continuously  increase  or  reduce  λ  until  Eq.  (25)  is  met.  Finally,  the  number  of
candidate failure components in Level 1 can be confirmed to be , and the corresponding system failure probabilityk̂

 
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4.2. Reliability Analysis in Level 2

After  candidate failure components are obtained in Level 1, one of the components is selected (it is assumed to
be et1 and its corresponding structural element is Et1

(1). If Et1
(1) undergoes ductile failure, it will be deleted and the virtual

load of the element resistance is added at the failure location. If Et1
(1) undergoes brittle failure, it will be deleted without

any added load. The conditional failure event of failure component S  in the remaining m-1 after the failure of et1  is
defined as Fes/et1

(2). Its reliability index in Level 2 is calculated as βes/et1

(2). The reliability indexes of the remaining m-1
88conditional failure events are calculated to confirm the average value βes/et1

(2), minimum value βmin/et1

(2), and maximum
value βmax/et1

(2) in Level 2. To define the uniformity of the reliability index and initial standard reliability index in Level 2,
the following are computed:

(26)

(27)

It is supposed that a total of l components (er1, er2,...er1) meet

(28)

(er1, er2,...er1) are called the initial candidate failure components in Level 2. These candidate failure components are
combined with et1 to form a parallel subsystem, namely,

(29)

(30)

Fig. (4). Algorithm flow chart.
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Similarly,  can  be  determined  by  the  same  way.  Finally,  all  the  parallel  subsystems  are
combined into a big series system to obtain the system failure probability in Level 2.
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As above, the refinement method is used to add λ failure components behind lth candidate failure component (er1
) or

delete λ failure components in the front of er1
. And continuously increase or reduce the λ until Eq. (25) is met. Finally,

the number of candidate failure components in  Level 2  is  confirmed  to be , and  the  corresponding  system failure

probability in Level 2 is .

                      

 l̂
(2)

l̂fP

 k̂
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4.3. Reliability Analysis in Level 3 or Higher Level

Similar to the method in Level 2, the reliability analysis in Level 3 or higher level can be conducted continuously to
expand the failure path until the whole system fails. Calculating system reliability in Level 3 or higher for complicated
structures  such  as  large-span  bridges  will  be  very  substantial.  In  engineering  applications,  conducting  a  system
reliability  analysis  in  Level  2  is  sufficient.  Thus,  the  analysis  of  system reliability  in  this  paper  only  considers  the
Levels 1 and 2.

Based on the methods and theories described in chapters 2-4, the algorithm flow for the system reliability of the
composite beam cable-stayed bridge in this paper is shown in Fig. (4).

5. ANALYSIS ON BRIDGE CASE

A composite beam cable-stayed bridge with a space of (100 + 100) m is considered here. The bridge utilizes double
and harp-type cables.  The main beam is a steel-concrete composite beam, which is  consisted of two steel  I-beams,
concrete deck and stud connectors. The main beam is rigidly fixed with the towers. The overall layout is shown in Fig.
(5).

Fig. (5). General layout of the bridge (Unit: m).

5.1. Stochastic Finite Element Model

Geometric nonlinearity is considered because of the lower stiffness of the bridge. The statistics characteristics are
shown in Table 3. The numbers of finite elements and the corresponding numbers of failure components are shown in
Fig. (6). The composite beam is treated as the nonlinear element with 10 DOF as mentioned before, and the tower and
cables are treaded normal plane beam element and truss element respectively. Component reliabilities of all elements
are calculated by the DDM method.

Table 3. Statistics characteristics of random variables (Note: [~] in the table means a range of values).

 Random variable  Mean  Coefficient of variation  Distribution type
 bridge deck elastic modulus  Ec(Mpa)  3.45×104  0.1  Normal
 steel beam elastic modulus  Es(Mpa)  2.00×105  0.1  Normal
 up-tower elastic modulus  Etu(Mpa)  3.38×104  0.1  Normal

 down-tower elastic modulus  Etb(Mpa)  3.19×104  0.1  Normal
 cable elastic modulus  Eb(Mpa)  1.95×105  0.1  Normal

 cable single area  Ab(m
2)  7.20×10-3  0.05  Log-normal

 composite beam unit weight  ρg(kN/m)  75.8  0.05  Normal
 secondary dead load  Ps(kN/m)  -30.5  0.1  Normal

 composite Beam bending moment resistance  Mbu(kN·m)  [5.18×104~8.34×104]  0.15  Normal
 tower bending moment resistance  Mtu(kN·m)  1.41×105  0.15  Normal
 cable tensile axial force resistance  Tb(kN)  1.20×104  0.15  Normal

 composite Beam axial force resistance  Pbu(kN)  [1.22×105~1.65×105]  0.125  Normal
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 Random variable  Mean  Coefficient of variation  Distribution type
 tower axial force resistance  Ptu(kN)  3.15×105  0.125  Normal

 stiffness of connectors  Ks(Mpa)  62.1  0.1  Normal
 live load  Pl(kN/m)  -10.5  0.15  Normal

5.2. Effects of Different Forms of LSFs on the Reliability

This paragraph analyzes the reliabilities of the composite beam and tower by considering two forms of LSFs. One
doesn't  include the effect  of  axial  force on ultimate load,  whereas another one includes the effect  of  axial  force on
ultimate load by considering the structure as a beam-column member. The two forms are described as follows:

Traditional form: The effect of axial force is not considered. Its LSF can be written as:1.
(31)

Interaction equation form: The effect of axial force is considered. Its LSF is given in the form of an interaction3.
equation, namely, Eqs. (18)-(19). The comparative result is shown in Fig. (7),

Fig. (6). Numbers of finite elements and failure components.

Based on the Fig.  (7),  the areas of  composite  beam which have smaller  axial  forces have the similar  reliability
results from the two methods, such as the areas of the composite beam corresponded by the 1#–5# and 26#–31# failure
components.  However,  the reliability considering the effect  of  axial  force is  significantly smaller  than that  without
considering the effect of axial force in the areas of the composite beam with larger axial force caused by cable force,
including the areas of composite beam corresponded by 6#-25# failure components. Likewise, the reliability index is
significantly low for the tower because of the effect of axial force. Thus, from a conservative standpoint, the effect of
axial force should be considered in calculating the reliability of a cable-stayed bridge.

Fig. (7). Reliabilities of beam and tower from two LSF forms.
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5.3. Calculation and Analysis of System Reliability in the Level 1

This paragraph calculates and analyzes the system reliability in Level 1. The reliability indexes of all the failure
components are shown in Fig. (8) .

Fig. (8). Reliability indexes of all failure components in Level 1.

On the basis of Fig. (8), the minimum reliability index in Level 1 is the reliability index of 45# failure component
corresponding to the 55* cable element, namely, βmin

1 = 3.80615. The initial standard reliability index is β 0
(1) = 4.80065.

The initial candidate failure components meeting  are 38#–51# components, corresponding to the
48*–61* cable elements. And the 12#–14# and 16#–19# failure components corresponding to 13*–15* and 17*–20*
composite beams are additionally selected by using the refinement method. The candidate failure components are used
to form a series system, as shown in Fig. (9).

Fig. (9). Series system of failure candidate components in Level 1.

The system reliability in Level 1 is obtained by using the method of ELSM: βsystem
1 = 3.8762.

5.4. Calculation and Analysis of System Reliability in the Level 2

In the stage of  Level  2,  the whole bridge system is  considered to be failed if  any of  the 13*–15* and 17*–20*
composite beams has been failed. Thus, there are seven corresponding failure components, namely, 12#, 13#, 14#, 16#,
17#, 18#, and 19#. Any failure in 48*–51* cable elements (corresponding to 38#–51# failure components) does not
imply the failure of the whole system. These failure components enter into the stage in Level 2, and their failure paths
are further expanded. By taking 45# failure component corresponding to 55* cable element as an example, the system
reliability after its failure is calculated. The result is presented in Fig. (10).

Fig.  (10)  indicates  that  in  Level  2,  after  the  failure  of  55*  cable  element,  the  reliability  index  of  46#  failure
component corresponding to 56* cable element has the minimum value, namely, βmin

2 = 3.60529. The candidate failure
components selected through initial standard reliability index and refinement method include 16# failure component
corresponding  to  17*  composite  beam  element,  and  38#–44#  and  46#–51#  failure  components  corresponding  to
48*–54* and 56*–61* cable elements. The candidate failure components are combined with 45# failure component in
Level 1 to form some sub-parallel systems. These sub-parallel systems are connected to form a series parallel system
which is shown in Fig. (11).
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Fig. (10). Reliability indexes of all failure components after the failure of 55* cable element.

Using the similar  treatment  method after  the failure  of  55* cable  elements,  the series  parallel  systems after  the
failures of other cable elements can be obtained. Finally, all series parallel systems are connected with seven failure
components of the composite beam (12#, 13#, 14#, 16#, 17#, 18#, and 19#) obtained in the stage Level 1 in series to
form a hybrid series parallel system, as indicated in Fig. (12).

Fig. (11). Series parallel system after the failure of 55* cable element.

Finally, after calculation, the system reliability in Level 2 is determined to be βsystem
(2). The value is relatively high.

That is to say, this composite beam cable-stayed bridge will have higher security assurance and will not easily fail.

Fig. (12). Hybrid series parallel system in Level 2.

CONCLUSION

This  paper  focuses on the system reliability  of  a  steel–concrete  composite  beam cable-stayed bridge.  The main
purpose of this work is to study the component reliability of the steel–concrete composite beam based on the stochastic
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finite element and recognize the main failure modes in system reliability. The main contributions of the present study
can be summarized as follows.

Based  on  the  nonlinear  element  model  with  10  DOF,  the  DDM  of  stochastic  finite  element  method  is1.
successfully applied to deduce response gradient expression of the steel-concrete composite beam.
The uniformity of the reliability index and standard reliability index is used to initially confirm the scope for2.
selecting candidate failure components. After obtaining the initial candidate failure components, the refinement
method is carried out to refine and screen the candidate failure components, and thus identify all the main failure
components or neglect the unnecessary non-main failure components.
The axial  forces caused by cables  are  considered in calculating the reliabilities  of  the beam and tower.  The3.
analysis result shows that axial force can cause the reliability index to decrease significantly.
The system reliabilities in Level 1 and Level 2 of a certain steel-concrete composite beam cable-stayed bridge4.
are analyzed by using the above-mentioned method. Finally, the corresponding results are successfully obtained
to verify the effectiveness of the method proposed in this paper.
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