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Abstract: Due to the complexity of multiple rocks and multiple parameters circumstance, various parameters are often reduced to
only one parameter empirically to generalize geological conditions, ignoring the really influential parameters. A developed method
was presented as a complement to 3D displacement inversion to obtain the relative important parameters under complex conditions
with limited computational work. Furthermore, this method was applied to a high steep slope in open-pit mining to investigate field
applicability of the developed system. Back analysis was conducted in the reality of the east open-pit working area of Daye Iron
Mine and propositional steps were presented for parameters solving in complex circumstance. Firstly, multi-factor and single-factor
sensitivity analysis were carried out to classify rock mass and mechanical parameters respectively according to the extent of their
effects on deformations. Secondly, based on the results, main influence factors were selected as inversion parameters and taken into a
3D calculating model to get the displacement field and stress field, all of which would be the artificial network training samples
together  with  inversion parameters.  Thirdly,  taking the  real  deformations  as  input  for  the  trained back propagation  (BP)  neural
network,  the  real  material  mechanical  parameters  could  be  obtained.  Finally,  the  results  of  trained  neural  network  have  been
confirmed by field monitoring data and provide a reference to obtain the matter parameters in complicated environment for other
similar projects.

Keywords: Back analysis, BP neural network, High steep slope, Rock mechanical parameters, Sensitivity analysis.

1. INTRODUCTION

The rock  mass  mechanical  parameters  are  the  key  factors  for  studying  the  stability  of  slope  in  open-pit  mines.
Nowadays, the methods and techniques for open-pit slope stability analysis is multifarious, for instance using limit
equilibrium methods, numerical methods, probabilistic approaches, etc. [1]. And more recent innovative methods, like
Slope Quality Index (SQI) and Rock Engineering Systems (RES) approach incorporate a systemic procedure to estimate
slope stability [2].

In the last decades, the numerical method has been applied extensively in current engineering practices to mitigate
the complexity and uncertainty of geological factors for a long time. However, the validity in numerical methods is
directly or indirectly related to the accuracy of rock mass mechanical parameters of calculations in most practical rock
engineering projects.

One powerful approach to tackle this problem is parameter inversion with numerical simulation methods, of which
the  results  were  used  as  the  equivalent  rock  mechanical  parameters  to  reflect  something  unknown  in  the  whole
geotechnical  system. Gioda [3]  and Sun [4]  explored fundamentals  principles  based on recent  developments  of  the
numerical techniques for parameter inversion. Tang et al. [5] published systematical treatise about engineering geology
numeral  simulation  and  back  analysis  of  parameters. Levasseur et al. [6]  set  out  the  identification  of  constitutive

* Address correspondence to this author at the 388 Lumo Rd, Wuhan, 430074, China; Tel: +86-02767883507; Fax: +86-02767883507; E-mail:
happyjohn@foxmail.com

http://benthamopen.com
http://crossmark.crossref.org/dialog/?doi=10.2174/10.2174/1874149501610010209&domain=pdf
http://www.benthamopen.com/TOCIEJ/
http://dx.doi.org/10.2174/10.2174/1874149501610010209
mailto:happyjohn@foxmail.com


parameters  from in-situ  geotechnical  measurements.  Kveldsvik  [7]  and  Cai  [8]  back-calculated  rock  mass  strength
parameters  based  on  measured  displacements  and  geotechnical  data.  Li  et  al.  [9]  experienced  how  the  equivalent
parameters obtained and affected the estimates of safety factors.

Scholars  presented practical  new methods and obtained a  practically  unique solution for  the elasto-plastic  back
analysis for rock mechanical parameters [10 - 12]. Artificial neural network (ANN) and genetic algorithm were also
applied to parameters inversion to get the optimized solution of mechanical parameters in recent years [13 - 16], and
typical  examples  were  given  in  different  circumstances  to  prove  the  feasibility  and  accuracy,  such  as  powerhouse
cavern [17, 18], large landslides [19], excavation support systems [20], sequential tunneling [21, 22], complex rock
slope deformation [23 - 25].

The essential restriction of parameter inversion is that the parameters of compute should be established at the outset:
if do not know the purpose of the study, we cannot determine which variables are relevant. So, when there are different
types of rocks in the studying area, scholars often simplify geological conditions and select only one of those various
parameters or formations according to their project experience. Yet amid to simplify calculations, there are concerns
that the reductionist approach is poorly precise and even fail to serve its purpose. For mining excavation calculation in
particular, big area coverage, long excavating cycle, there are very complex overlying strata and mechanical parameters
of rock mass involved in calculation, the hypothesis of singular one media or excavating all at once cannot satisfy the
needs of engineering.

Despite the existence of back-analysis, a more complete one that is able to combine a broader number of potential
relevant factors and parameters of complex rock engineering projects is still lacking. Thereby, in this paper, a newly
approach  that  integrates  the  features  of  3  dimensional  (3D)  displacement  inversion  and  sensitivity  analysis  was
developed to infer the uncertainties under complex geological conditions from a holistic point of view and obtain the
really matter sensitive parameters with finite calculations, and the east open-pit working area of Daye Iron Mine in
China were selected as the case study examples.

2. METHODOLOGY

As  far  as  a  practical  mining  excavation  calculation  model,  the  complex  nonlinear  relationship  between  the
characteristic factors of rocks and their mechanical behaviors by explicit functions may be unquantifiable. Once all the
potentially relevant relations have to been taken into account, the given parameters of compute will be enormous and
more difficult to determine. A new and simplified approach developed from 3D-displacement inversion is presented for
the  determination  of  rock  mechanics  parameters,  to  this  system,  multi-factor  sensitivity  analysis  and  mono-factor
sensitivity analysis are added to improve it. Fig. (1) illustrates the flow chart of this study.

Fig. (1). The flow chart of the improved inversion method.
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The major steps for obtaining rock parameters are organized as follows:

When the 3D numerical calculation model of study area have been established, all rock units in the area should1.
be  ranked  firstly  by  multi-factor  sensitivity  analysis  according  to  their  influence  on  the  deformation  of  3D
numerical model.
Then  sort  the  mechanical  parameters  of  the  relative  important  rocks  in  terms  of  vulnerability  to  ground2.
deformation by mono-factor sensitivity analysis. After the relative importance of each rock units and mechanical
parameters  determined,  the  parameters  with  larger  weights  will  be  chosen  as  inversion  parameters  for
computing.
Take the inversion parameters (E, μ, C, φ et al.) into 3D numerical model to calculate the displacement field and3.
stress field (σ, u), both the two sets of data, the inversion parameters and numerical results (σ, u)), make up the
training samples for artificial neural network (ANN).
When the training is completed from the training samples, the well-trained neural network could excellent map4.
the nonlinear relation between parameters and numerical results. And then input the measured displacement (u*)
into the trained network as predicting sample to obtain the real material parameters (E*, μ*, C*, φ* et al).
Apply the real material parameters (E*, μ*, C*, φ*et al.) into 3D model, and the stress and the displacement5.
deformation are obtained from the forward calculation results, which are verified by the field monitoring data to
ensure the accuracy of parameters.

The results can meet the requirement of the project and provide a theoretical basis for long-term stability of super
high steep slopes.

3. PRACTICAL APPLICATIONS

3.1. Sampling Location and 3D Model

Fig. (2) shows the aerial photo of Daye Iron Mine and the open-pit slope. The East Pit of Daye Iron Mine is 2.4 km
long in E-W direction and 1.0 km long in S-N direction. The height of north slope of Daye open-pit is within 170~270 m
and that of the south slope is within 86~200 m. The high-steep slope here is 230~430 m high and the slope angle varies
between 38° and 43°. Open pit method is adopted. Fig. (3) shows the location of the selected study area in the East Pit
of Daye Iron Mine.

Fig. (2). The aerial photo of Daye Iron Mine and the open-pit slope.

The study area’s geological structure is medially developed. Most rock masses are jointed solid rock, and there are
two main faults: F9 and F25, both of which pass through the upper bed and the lower bed respectively. The in-situ stress
test results indicate that no remarkable tectonic stress appears.
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Fig. (3). Location of the selected study area (inside the blue rectangle) in the East Pit of Daye Iron Mine.

Mohr-Coulomb (M-C) model was considered as the material model for numerical simulation [26]. Considering the
stress elimination, the model size’s in the E-W, N-S, and vertical direction was 900 m, 800 m and 680 m. The study
areas can be divided into five rock units: diorite, marble, magnetite, fault fracture zone and back filled body according
to the type of rock masses. Tetrahedral meshes were used in the model, and composed of 76331 elements and 131016
nodes. Fig. (4) shows the 3D numerical calculation model.

Fig. (4). Finite difference grid and 3D numerical calculation model.

In  this  calculation,  five  subsidence  checkpoints  were  selected  to  process  sensitively  analysis.  Checkpoints  are
represented by one of these letters U1, U2, U3, U4, U5, these letters correspond to locations south slope-diorite, north
slope-marble, back filled body group, magnetite group and fault fracture zone, respectively.

3.2. Factors Definition with Sensitivity Analysis

According to the related investigation data and the preliminary research results [27], parameter values in Table 1
were regarded as the reference values for sensitivity analysis. 25 vast and complex different rock parameters need to be
considered in the studying area. If every parameter of each rock units needed to be inverted, the number of combined
schemes could be significantly large. Besides, output variables’ number is too great to get each parameter accurately.
For that, some measures, namely multi-factor and mono-factor sensitivity analysis, are taken to achieve less parameters
and definite solution.
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Table 1. Reference values for sensitivity analysis model.

Rock units Elasticity modulus
/GPa

Poisson’s
ratio

Cohesion
/MPa Internal friction angle /(°) Tensile strength

/MPa
Marble 8.5 0.23 0.26 30 0.25
Diorite 9.0 0.23 0.27 29 0.10

Magnetite 7.8 0.27 0.35 42 0.35
Back filled body 3.0 0.22 0.07 27 0.02

Fault fracture zone 3.0 0.22 0.30 22 0.04

3.2.1. Multi-factor Sensitivity Analysis of Rocks

Rocks should be firstly ranked by multi-factor sensitivity analysis according to their influence on deformation. In
the part, factors were the five rock units, based on the reference values in Table 1, four levels (i=1, 2, 3, 4) were chosen:
the reference value, reference value rise by 20%, reference value rise by 10%, reference value fall by 10%. Table 2
shows the  5-factor  4-level  orthogonal  experiment  (L16(4

5))  and  the  corresponding  results  of  multi-factor  sensitivity
analysis.

Table 2. The orthogonal table and results.

No.
Factors and levels of orthogonal experiment

Marble Diorite Magnetite Back filled body Fault fracture zone
1 1 1 1 1 1
2 1 2 2 2 2
3 1 3 3 3 3
4 1 4 4 4 4
5 2 1 2 3 4
6 2 2 1 4 3
7 2 3 4 1 2
8 2 4 3 2 1
9 3 1 3 4 2
10 3 2 4 3 1
11 3 3 1 2 4
12 3 4 2 1 3
13 4 1 4 2 3
14 4 2 3 1 4
15 4 3 2 4 1
16 4 4 1 3 2
S1 330.5 153.5 265.7 291.9 310.5
S2 305.25 6.9 284.9 305.7 277.7
S3 283.35 34.3 313.7 270.65 294.55
S4 280.7 1005 335.3 331.45 317.4
X1 82.625 38.375 66.43 72.975 77.625
X2 76.312 1.725 71.22 76.425 69.425
X3 70.837 8.575 78.42 67.662 73.637
X4 70.175 251.25 83.83 82.862 79.35
R 12.45 249.52 17.4 15.2 9.925

Si (i=1,2,3,4): sum of four computational displacements of a certain level i;
Xi (i=1,2,3,4): average value of the sum of four computational displacements, Xi = Si/ 4;
R: the range of Xi, R=Xmax-Xmin;
Levels (i=1, 2, 3, 4): the reference value, reference value rise by 20%, reference value rise by 10%, reference value fall by 10%.

For several factors simultaneously changed were considered. The range of the average value of factors (R) could
reflect the differences of sensibility of the factors accurately. Analyzed the range ‘R’ of each factor in Table 2  and
assessed affecting degree of each rock unit  were diorite,  magnetite,  the back filled body, marble,  and faults.  These
results were in coincidence with previous practical project experience.
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3.2.2. Mono-factor Sensitivity Analysis of Parameters

The mono-factor sensitivity analysis was applied to rank the relative importance of mechanical parameters of each
single  type of  rock mass.  Firstly,  5  mechanical  parameters  of  each rock mass (listed in  Table 1)  were taken as  the
fundamental state, U = f (x1, x2, x3, ...xn). When the other entire parameters are fixed, the parameter xi varied at a time
with increasing by 20%, increasing by 10%, and reducing by 10%. If a small change of factor X in the inputs could
produce the greatest effects on output U, then the displacements of monitoring points U was marked sensitive to the
changes in factor xi.

The overall parameters of the rock units are presented and for one specific rock mass, the diorite, the calculation of
mono-factor sensitivity is presented in detail. The 5 mechanical parameters values (Table 1) were considered as base
values  and  reasonably  compounded  in  the  calculation  table  of  mono-factor  sensitivity  analysis  to  obtain  the
displacements  U  as  shown  in  Table  3.

Table 3. Calculation table of mono-factor sensitivity analysis of diorite.

No. Elasticity modulus
/GPa

Poisson’s
ratio

Cohesion
/MPa Internal friction angle /(°) Tensile strength

/MPa
U1

/mm
U2

/mm
U3

/mm
U4

/mm
1 9.00 0.23 0.27 29.00 0.10 52.00 2.20 12.94 0.99
2 10.80 0.23 0.27 29.00 0.10 43.00 1.80 10.55 0.76
3 9.90 0.23 0.27 29.00 0.10 47.00 2.00 11.49 0.81
4 8.10 0.23 0.27 29.00 0.10 57.80 2.40 14.56 1.12
5 -- -- -- -- -- -- -- -- --
6 9.00 0.28 0.27 29.00 0.10 48.00 2.85 13.18 1.77
7 9.00 0.25 0.27 29.00 0.10 52.00 2.50 13.73 1.40
8 9.00 0.21 0.27 29.00 0.10 51.00 1.96 14.28 0.60
9 -- -- -- -- -- -- -- -- --
10 9.00 0.23 0.32 29.00 0.10 30.50 1.45 12.89 2.14
11 9.00 0.23 0.30 29.00 0.10 39.50 1.75 12.46 1.62
12 9.00 0.23 0.24 29.00 0.10 69.50 2.82 14.49 0.68
13 -- -- -- -- -- -- -- -- --
14 9.00 0.23 0.27 34.80 0.10 9.20 1.33 14.25 4.13
15 9.00 0.23 0.27 31.90 0.10 24.00 1.60 12.93 2.65
16 9.00 0.23 0.27 26.10 0.10 158.00 3.50 16.24 1.70
17 -- -- -- -- -- -- -- -- --
18 9.00 0.23 0.27 29.00 0.12 52.50 2.25 14.02 0.85
19 9.00 0.23 0.27 29.00 0.11 52.20 2.23 13.35 1.03
20 9.00 0.23 0.27 29.00 0.09 51.90 2.17 12.91 0.98

Experimental groups No.1, No.5, No.9, No.13, No.17 share the same value, namely the reference value of diorite.
Ui is the displacements of four checkpoints computed by numerical calculation model. U1, U2, U3, U4, U5, correspond to locations south slope-diorite,
north slope-marble, back filled body group, magnetite group and fault fracture zone, respectively.

For a quantitative comparison, the original combination indicators should be transformed into comparable values by
the dimensionless method. Sensitivity of a normalized parameter was defined by the following formula [28]:

(1)

where Sk  is  the sensitivity of  factor  xk,   is  the relative variation of  displacements;  and  is  the relative
variation of a given factor.

Plug mechanical parameters (Table 3) into the equation, then sensitivities of diorite’s factors were calculated as the
‘U1’ in Table 4. The sensitivity coefficients stand for the relative importance of mechanical parameters of diorite. Three
factors were separated from the five mechanical parameters: internal friction angle (9.9615), cohesion (2.6122), and
elasticity modulus (0.9817).
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Table 4. Sensitivity coefficients of each position’s mechanical parameters.

Monitoring points Elasticity modulus
/GPa

Poisson’s
ratio

Cohesion
/MPa

Internal friction angle
/(°)

Tensile strength
/MPa

U1 0.9807 0.2115 2.6122 9.9615 0.0353
U2 0.9091 1.3106 2.1894 3.5379 0.1288
U3 1.0995 0.5796 0.245 1.0211 0.5059
U4 1.0746 4.0122 5.1041 19.6870 0.4133

U1: checkpoint allocated in south slope-diorite; U2: checkpoint allocated in north slope-marble; U3: checkpoint allocated in back filled body group; U4:
checkpoint allocated in magnetite group.

Similar  to  the  exception  of  diorite,  sensitivity  coefficients  of  all  the  five  monitoring  positions’  mechanical
parameters  were  obtained  as  listed  in  Table  4.  The  sampling  schemes  for  inversion  are,  in  fact  the  parameter
combinations  of  finite  element  calculation,  and  elasticity  modulus  are  mandatory.  According  to  the  sensitivity
coefficients, 11 parameters that have relatively larger impact on slope deformations were showed in descending orders
are as follows:

U1: Diorite in north slope: internal friction angle, cohesion, elasticity modulus;

U2: Marble in south slope: internal friction angle, cohesion, elasticity modulus;

U3: The back filled body: elasticity modulus, internal friction angle ;

U4: Magnetite: internal friction angle, cohesion, elasticity modulus.

With a view to the specificity of fault fracture zone, the following parameters were also chosen as the target vectors:

Faults: internal friction angle, cohesion, elasticity modulus.

Consequently there are a total of 14 pivotal parameters selected from 25 mechanical parameters to be calculated.

Table 5. Orthogonal design table for 14 levels of factor 2.

No.
Levels

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 X13 X14 X15
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2 1 1 1 1 1 1 1 2 2 2 2 2 2 2
3 1 1 1 2 2 2 2 1 1 1 1 2 2 2
4 1 1 1 2 2 2 2 2 2 2 2 1 1 1
5 1 2 2 1 1 2 2 1 1 2 2 1 1 2
6 1 2 2 1 1 2 2 2 2 1 1 2 2 1
7 1 2 2 2 2 1 1 1 1 2 2 2 2 1
8 1 2 2 2 2 1 1 2 2 1 1 1 1 2
9 2 1 2 1 2 1 2 1 2 1 2 1 2 1
10 2 1 2 1 2 1 2 2 1 2 1 2 1 2
11 2 1 2 2 1 2 1 1 2 1 2 2 1 2
12 2 1 2 2 1 2 1 2 1 2 1 1 2 1
13 2 2 1 1 2 2 1 1 2 2 1 1 2 2
14 2 2 1 1 2 2 1 2 1 1 2 2 1 1
15 2 2 1 2 1 1 2 1 2 2 1 2 1 1
16 2 2 1 2 1 1 2 2 1 1 2 1 2 2

X1: elasticity modulus of diorite; X2: cohesion of diorite; X3: internal friction angle of diorite;
X4: elasticity modulus of marble; X5: cohesion of marble; X6: internal friction angle of marble;
X7: elasticity modulus of magnetite; X8: cohesion of magnetite; X9: internal friction angle of magnetite; X10: elasticity modulus of the fault fracture
zone; X11: cohesion of the fault fracture zone; X12: internal friction angle of the fault fracture zone; X13: elasticity modulus of the back filled body;
X14: internal friction angle of the back filled body; X15: null.
Level 1 and 2: represent reference value rise by 10% and fall by 10%.

3.3. Mechanical Parameters Inversion with Neural Network

3.3.1. Training Samples of Neural Network

The 14 acquired key parameters and a “null” were taken as 15 factors, and each factor was divided into 2 value
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levels, namely each factor represent 110% and 90% of the baseline value respectively. Then, a orthogonal experiment
design (L16(2

15)) was applied (Table 5), of which the combined projects {X1i, X2i, X3i, ...X15i }, i = 16 were regard as
output vector.

Numerical tests of these combined projects were carried out with the 3D model (Fig. 4), the displacements of the
five representative positions in different situations were calculated (listed in Table 6), and regard as the input vector.

Table 6. Displacement deformation of analysis model.

No. U1 U2 U3 U4 U5

1 -1.590 -2.508 0.010 0.068 0.248
2 -2.469 -3.308 0.040 0.032 0.276
3 -2.842 -4.002 0.000 0.045 0.257
4 -2.634 -3.646 -0.010 0.060 0.169
5 -8.311 -9.802 -0.018 0.021 0.195
6 -89.180 -105.100 -0.025 -0.048 0.201
7 -88.410 -104.800 -0.014 0.028 0.294
8 -89.750 -104.700 -0.032 0.022 0.185
9 -42.930 -49.210 -0.014 0.030 0.231
10 -41.870 -48.250 -0.014 0.044 0.234
11 -44.970 -52.140 -0.017 0.042 0.228
12 -43.240 -49.610 0.002 0.020 0.234
13 -8.293 -9.799 0.013 0.067 0.372
14 -9.402 -11.210 0.058 0.070 0.267
15 -8.628 -10.280 0.050 0.075 0.269
16 -8.347 -9.874 0.070 0.054 0.580

U1: checkpoint allocated in south slope; U2: checkpoint allocated in north slope;
U3: checkpoint allocated in back filled body group; U4: checkpoint allocated in magnetite group.
U5: checkpoint allocated in fault fracture zone.

By now, the training samples for neural network were acquired completely.

3.3.2. Neural Network Training

(1) Artificial neural network (ANN) design

The ANN model used here is based on the standard BP network architecture, which consists of fully interconnected
layers of processing units, incorporated with transfer functions [29].

Input and output layera.
The number of input neurons and output neurons depended on the number of elements in BP network. Input
neurons were the displacements on 5 representative points and output neurons were 14 mechanical parameters,
so a 5-input, 14-output network was necessary.
Hidden layerb.
A network with multiple hidden neurons can approximate any nonlinear multidimensional function. To improve
the computation efficiency, one hidden layer was selected to form the network. Deciding the number of neurons
in the hidden layers was a very important part of deciding the overall neural network architecture. Using too few
neurons  in  the  hidden  layers  will  result  in  something  called  under-fitting.  Under-fitting  can  lead  to  no
convergence.  Using  too  many  neurons  in  the  hidden  layers  can  result  in  over-fitting.  An  inordinately  large
number of neurons in the hidden layers can also increase the time it takes to train the network. The amount of
training time can increase to the point that it is impossible to adequately train the neural network. Obviously,
some compromise must be reached between too many and too few neurons in the hidden layers. Generally, the
number of hidden neurons can be decided in following formula [30]:

(2)

(3)

where n1 is the number of hidden neurons; n is the number of output neurons, and n=5; m is the number of input

amnn ++=1  

nn 21 log≥  
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neurons,  and  m=14;  a  is  a  constant  ranging  from  1  to  10.  Calculations  indicate  that  the  number  of  hidden
neurons ranges between 5 and 15.
The modified BP algorithmc.
The Neural Network Toolbox provided tools for designing, implementing, visualizing, and simulating neural
networks. Existing functions in MATLAB were called to implement the BP algorithms and the modified BP
algorithms.  A log-sigmoid transfer  function (Logsig)  was used to  calculate  the  hidden layer’s  output,  and a
linear transfer function (Purelin) was employed to calculate the output layer’s output.

(2) Training the network

Based on the relative research achievements and engineering experiences, n1=6, n1=9 and n1=12 were selected as the
numbers of hidden neurons. The data listed in Tables 5 and 6 were imported into the network as training samples. In the
training  process,  the  network  prediction  error  went  down  incrementally  until  it  fell  below 10-4,  Fig.  (5)  shows  the
diagram of the considered BP network in the learning stage.

Fig. (5). Diagram of the considered BP network in the learning stage.

Fig. (6). Error curve for 6 nodes network structure.

Figs.  (6-8)  show  the  errors  decrease  with  increasing  epochs  when  n1=6,  n1=9  and  n1=12  respectively.  Results
showed  that  the  network  with  9  hidden  neurons  performed  better  than  others  and  could  meet  the  requirement  of
accuracy.
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Fig. (7). Error curve for 9 nodes network structure.

Fig. (8). Error curve for 12 nodes network structure.

3.3.3. Inverse Analysis of Mechanical Parameters

Once the ANN has been trained using the training set, the interaction function can be established with the non-linear
function between mechanical parameters and displacements. The actual displacements of five monitoring points: U=
[-35, -163, 0.75, -3.65, 1.12] (units: mm) was imported as the given input for the network with 9 hidden neurons. Then
the output vectors would be the predicted mechanical parameters, as listed in Table 7.

Table 7. Rock mechanics parameters determined by back analysis.

Petrofabrics Modulus of elasticity /GPa Poisson’s
ratio

Cohesion
/MPa Internal friction angle /(°) Tensile strength

/MPa
Marble 15.60 0.23 0.25 28 0.25
Diorite 16.90 0.23 0.26 30 0.10

Magnetite 12.50 0.27 0.35 40 0.35
Back filled body 2.00 0.20 0.07 27 0.02

Fault fracture zone 1.70 0.20 0.13 23 0.04

3.4. Field Test Verification

The mechanical parameters calculated by inversion have great practical value in the surrounding rock stability and
the  slope  stability  of  open-pit.  The  obtained  parameters  in  Table  7  were  applied  to  simulate  open-pit  excavation.
Monitoring points  F9-5 and F9-6 are located on both sides of  Fault  F9.  Both the calculated vertical  and horizontal
displacements were compared with the field monitoring data to verify the the accuracy of the network. As listed in
Table  8,  the  maximum error  rate  between  numerically  simulated  data  and  field  monitoring  data  was  13%,  and  the
minimum error rate was as low as 0.2%. The basic agreement of those two sets of data indicates that the mechanical
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parameters and initial stress field obtained from the proposed back analysis are reasonable.

Table 8. Observational and computational results comparison.

No. Observational data
/mm

Computational results
/mm Relative error

F9-6
Z-Displacement 35.0 34.5 1.4%
X-Displacement 27.0 30.7 13.0%

F9-5
Z-Displacement 149.0 143.1 3.9%
X-Displacement 112.0 112.2 0.2%

Verification  analysis  shows good agreements  between  the  simulation  results  and  the  actual  field  data  for  slope
stability in open-pit mines. As discussed in relation to the project example, this developed method could cull the pivotal
parameters from amount of parameters correctly and effectively, and has good field applicability, not only for slope
stability, but other rock engineering projects with complicated geological conditions.

CONCLUSION

Both  multi-factor  sensitivity  analysis  and  mono-factor  sensitivity  analysis  were  employed  to  determine  the1.
influence of rock types and mechanical parameters. In descending order, the lists of material types according
their influence on slope deformations were diorite, magnetite, the back filled body, marble and the faults, which
in  coincidence  with  previous  practical  project  experience.  In  descending  order,  the  lists  of  mechanical
parameters  according  their  influence  on  slope  deformations  were  internal  friction  angle,  cohesion,  elastic
modulus, poisson ratio and tensile strength.
Take the obtained parameters into the 3D calculation model, the results showed that the small relative errors2.
between numerical simulation result and the observation data meet the requirement of precision. So the 3D-
displacement inversion with sensitivity analysis had great value in engineering applications of multi-parameters
and provided a theoretical basis for long-term stability of super high steep slopes.
The method presented in this paper is a natural development of 3D displacement inversion, rock mechanical3.
parameters could be successfully predicted and reliable for further study with finite steps. Improved by both
multi-factor  sensitivity analysis  and mono-factor  sensitivity analysis,  this  method could screen out  the most
efficacious  rock  mechanical  parameters  correctly  and  reasonably  in  complex  environment  with  simple
calculations.  Furthermore,  5  reference  detailed  calculating  steps  were  provided  for  parameter  inversion  in
multiple rocks and multiple parameters circumstance.
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