
Send Orders for Reprints to reprints@benthamscience.ae

The Open Civil Engineering Journal, 2017, 11, 153-166 153

1874-1495/17 2017  Bentham Open

The Open Civil Engineering Journal

Content list available at: www.benthamopen.com/TOCIEJ/

DOI: 10.2174/1874149501711010153

RESEARCH ARTICLE

Revised Level  Set-Based Method for  Topology Optimization and Its
Applications in Bridge Construction

Jing Wu1, 2 and Li Wu1,*

1Engineering Faculty, China University of Geosciences, Wuhan 430074, China
2Hubei Engineering University, Xiaogan 432000, China

Received: December 24, 2015 Revised: September 08, 2016 Accepted: October 14, 2016

Abstract: To cure imperfections such as low accuracy and the lack of ability to nucleate hole in the conventional level set-based
topology optimization method, a novel method using a trapezoidal method with discrete design variables is proposed. The proposed
method can simultaneously accomplish topology and shape optimization. The finite element method is employed to obtain element
properties and provide data for calculating design and topological sensitivities. With the aim of performing the finite element method
on a non-conforming mesh, a relation between the level set function and the element densities field has to be clearly defined. The
element densities field is obtained by averaging the Heaviside function values. The Lagrange multiplier method is exploited to fulfill
the  volume  constraint.  Based  on  topological  and  design  sensitivity  and  the  trapezoidal  method,  the  Hamilton-Jacobi  partial
differential equation is updated recursively to find the optimal layout. In order to stabilize the iterations and improve the efficiency of
the algorithm, re-initiation of the level set function is necessary. Then, the detailed process of a cantilever design is illustrated. To
demonstrate the applications of the proposed method in bridge construction, two numerical examples of a pylon bridge design are
introduced. It is shown that the results match practical designs very well, and the proposed method is a helpful tool in bridge design.

Keywords: Level set method, Sensitivity analysis, Topology optimization, Trapezoidal method.

1. INTRODUCTION

Topology optimization is conducive to the conceptual design of a structure and enables engineers to find optimal
material distribution. A wide range of fascinating applications of topology optimization has been developed [1 - 3].
Sophisticated  methods  have  emerged  to  help  engineers  deal  with  the  topology  optimization  problem  of  discrete
structures. However, there are more complexities by far in the topology optimization problem concerning a continuum
structure. The methods available for engineers to solve continuum optimization problems are still limited and imperfect.
Accordingly, research on the continuum optimization problem is still undertaken for better optimization results and
accuracy.

After almost 30 years of development, four crucial methods have stood out for the topology optimization of the
continuum  structure,  namely,  the  homogenization  method  [4],  the  level  set-based  methods  [5],  the  evolutionary
structural optimization (ESO) approach [6], and the solid isotropic material with penalization (SIMP) scheme [7].

The homogenization method originated from the pioneering work of Bendsoe and Kikuchi in the late 1980s [8]. In
the 1990s, most of the topology optimization work depended on the homogenization method [9, 10]. In addition, the
SIMP scheme can be regarded as a variant of the homogenization method [11, 12]. In the late 1990s and early 2000s,
the SIMP scheme supplanted the homogenization method and became popular for researchers due to its simplicity. The
basic  idea  of  ESO  was  developed  from  the  one-way  hard-kill  strategies.  The  structure  is  first  discretized,  and  the
material of elements that have the lowest strain energy density are set to be null in each iteration [13].
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Moreover, researchers ingeniously innovated some multi-discipline methods [14, 15]. The level set method was first
created  by  Sethian  and  Osher  [16].  In  the  early  2000s,  the  level  set-based  method  was  introduced  in  the  topology
optimization  discipline  and  became  increasingly  popular.  Level  set-based  topology  optimization  methods  could
simultaneously evade the checkboard problem and accomplish topology and shape optimization, which are unreachable
by density-based methods.  The boundary is  characterized by the principal  process of  the level  set  method with the
Hamilton-Jacobi  equation,  making the  boundary evolve and allowing boundary manipulation.  The evolution of  the
boundary uses the analytical design sensitivity. Therefore, the design sensitivity always corresponds to the boundary
velocity.

Topology changes of structures can be made easily by the level set method. However, they will encounter trouble
when inadequate holes are initially laid within the structure for their inability to increase the number of holes, which is a
direct  consequence  of  the  maximum  principle.  Hence,  the  speculation  regarding  the  number  of  holes  is  of  great
importance for the conventional level set methods for topology optimization. To overcome the problem, the topological
sensitivities could be introduced when the level set function is changed, facilitating the nucleation of holes [17]. The
topological sensitivities are acknowledged to be one of the most important tools in topology optimization.

Using  the  topological  sensitivities,  this  study  proposes  a  more  accurate  level  set-based  topology  optimization
method. In place of the tapping upwind scheme, a method merely assures first order accuracy, the trapezoidal method
[18] can be utilized to promote boundary changes of the structure, bringing about more accurate results. The topological
sensitivities  and  the  design  sensitivities  are  combined  to  establish  the  velocity  of  boundary.  Then,  the  trapezoidal
method is used to solve the Hamilton-Jacobi equation.

2. LEVEL SET METHOD

2.1. Level Set Function

A  free  moving  boundary  that  encircles  the  design  space  is  set  to  be  the  zero  level  set.  This  is  the  underlying
principle of the level set method. Any change occurring in the boundary is susceptible to the evolvement of the level set
function, which occupies a higher order one-dimensional space [19 - 21]. As Fig. (1) shows, D denotes the structural
design  domain,  which  is  the  subject  of  the  topology  optimization.  The  material  domain  is  denoted  by  Ω,  which  is
specified using the boundary .

Fig. (1). Design domain and material domain.

Fig. (2) illustrates that the two-dimensional boundary is defined by a zero level set of signed distance function,
which  occupies  a  three-dimensional  space  and  is  also  a  level  set  function.  When  the  structure  is  a  subset  of  some
domain Ω, which lies in a bigger design domain D, the subsequent properties manifest themselves as follows:

 
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Fig. (2). Level set function and zero level set.

(1)

in which , as before, indicates the lower dimensional boundary, while Ф(x) denotes the level set function. In the
optimization of structure, for simplicity, the level set of zero is usually used to indicate the boundary as :

(2)

Operating the preceding formula with differentiation gives the evolution formula for the level set function, which is
defined with the subsequent Hamilton-Jacobi equation:

(3)

where  denotes normal component of velocity, while t denotes pseudo time.

When a function, which is described with less dimensions, is embedded into a function, which is described with
more dimensions, there will be many favorable features [22]. Furthermore, representing the function described with
more dimensions by a signed distance function facilitates the update process. Hence, the signed distance function is
frequently used to represent the level set function at first. However, the degeneration of convergence properties emerges
in the process of updating. Hence, the re-initialization techniques are required to regulate the level set function [23].

2.2. Structure Discretization

Prior to the optimization process, the structure is required to be discretized, after which the analytical sensitivities
are calculated. With the aim of performing the finite element method on a non-conforming mesh, the relation between
the level set function and the element density field pe, which is usually obtained by averaging the Heaviside function H,
must be clearly defined:

(4)
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An approximate Heaviside function could be utilized to evaluate the element density, for example, a third order
polynomial:

(5)

(6)

where ε is the lower bound for the element densities and h denotes the bandwidth of the approximate Heaviside.
When h → 0, it is transformed to the exact Heaviside and physically equals the volume fraction of material in each cell.

The density evaluated by the equation (5) is eligible to be directly applied to assess the stiffness, which is called the
ersatz material approach. The stiffness element is evaluated by the following equation:

(7)

in which Ke denotes the elemental initial stiffness matrix, and u denotes displacement vector, while f denotes the
external loading vector.

3. FORMULATION OF TOPOLOGY OPTIMIZATION PROBLEM

The  objective  of  optimization  is  to  reduce  the  weight  of  the  structure  and  simultaneously  find  the  optimal
distribution of materials to maximize the structural stiffness. Therefore, structural compliance is an objective function.
h(pe, u) Linear constraint is employed to demonstrate the linear attribute that the structure demonstrates, and nonlinear
constraint  g(pe)  is  used  to  demonstrate  the  volume  fraction.  The  mathematical  model  of  the  topology  optimization
problem for continuum is defined by:

min

(8)

s.t. (9)

(10)

(11)

where  f  is  the  external  loading  vector,  Vmax  and  is  the  desired  volume  fraction.  The  element  density   varies
between the lower bound and ε 1. The definition of ε is to evade singularity. The element density  is evaluated by
equation (5).

4. SENSITIVITY ANALYSIS

4.1. Design Sensitivity

The  evolvement  of  the  level  set  function  demands  the  message  from  the  element  sensitivities.  If  the  moving
boundary satisfies the traction-free boundary conditions, the subsequent formula could be used to define the design
sensitivity of the compliance objective :

(12)

where  is a coefficient, and it is a result of equation (7) for the avoidance of singularity, while u denotes the
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global  displacement  vector,  and  ue  denotes  the  element  displacement  vector  [24].  There  is  a  significant  difference
between the formula of design sensitivity and the one employed by SIMP, as the densities defined in this work have
been  polarized  while  the  avoidance  of  intermediate  densities  penalization  is  utilized.  Straightforwardly,  the  design
sensitivity with respect to volume constraint g(pe) is identical to that in [25]:

(13)

4.2. Topological Sensitivity

Let Ω be an open-bounded domain with a smooth boundary and set Ωe to be a new created domain, then:

(14)

in which the boundary can be expressed by:

(15)

and
(16)

where  denotes a sphere of radius ε with its center located at  [26]. Hence, the new domain Ωe, which has

the tiny hole , emerges. Usually a shape functional Ψ(Ωe), which has association with the topologically perturbed
domain, accepts subsequent topological asymptotic expansion, which is expressed by:

(17)

in which Ψ(Ω) denotes a shape functional belonging to the unperturbed domain. Moreover, f(ε) denotes a function
whose values are always positive, so that f(ε) → 0 when ε → 0. Then, function , which could be considered
a  first  order  correction  of  Ψ(Ω)  to  approximate,  Ψ(Ωε)  is  used  to  express  the  topological  sensitivity  of  ψ  at  .
Rearranging equation (17) gives the following:

(18)

Limit passage ε → 0 of the preceding equation results in:

(19)

An  inference  about  the  topological  optimization  could  be  made  by  exploiting  its  geometrical  interpretation.
However, for the sake of making good use of topological sensitivity, an explicit numerical formula should be given.
Topological sensitivity with respect to the two-dimensional objective function , which aims to minimize the
structural compliance and satisfies the traction-free boundary conditions on the newly created hole as regards a sphere
with a radius of one as the model hole, is

(20)

where ue
T(KTr)e ue is the finite element approximation to the product tr(σ)tr(ε*) in which σ and ε* separately denote

the stress tensor and strain tensor [27]. In (17) λ and µ denote the Lamé parameters. The topological sensitivity with
respect to volume constraint , which involves a sphere with a radius of one, is expressed by:

(21)
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5. PROPOSED METHOD

For the compliance minimum problem, we propose an iterative algorithm incorporated with the level set method,
design sensitivity, and topological sensitivity. We have implemented the algorithm with MATLAB. A level set function
is established according to material boundary. As discussed, it is preferable to choose the signed distance function as a
level  set  function  for  its  virtue  of  simplicity  shown in  the  function  updating  process.  Then,  the  state  equations  are
discretized on finite elements. For simplicity, bi-linear, four-node, square elements are used. After the process of finite
element  analysis,  the  global  displacement  vector  u  and  elemental  displacement  vector  ue  will  be  returned,  and  the
algorithm updates the level set function.

In the method proposed in this  work,  the sign of the design sensitivity is  reversed and employed as the normal
velocity vn for the boundary of the design. For the sake of avoidance of a local minimum, which consists of insufficient
holes, topological sensitivity is incorporated into the proposed update scheme. A revised trapezoidal method is utilized
to  solve  formula  (3)  of  the  update  scheme  so  that  a  more  accurate  result  is  obtained.  In  comparison  with  the
conventional level set method, the forward Euler method is always exploited. Based on formula (3) and the trapezoidal
method, a revised and novel update scheme for the level set function is defined as follows:

(22)

in which  is a positive parameter, and Δt  is a step size of time. To strike a balance between the influence of
design sensitivity  and that of topological sensitivity must be well defined.

In addition, vn and η are the velocity terms that are defined by design sensitivity and topological sensitivity. To meet
the volume constraint, both terms are defined by the Lagrangian design sensitivity and topological sensitivity:

(23)

where   are  parameters.  They  are  updated  at  each  iteration  and  described  through the  subsequent
formula:

(24)

where Vk is the volume of the current optimized result after k iterations. The coefficient  should be a static
coefficient. With Lagrangian and sensitivity outcomes, velocity vn, which is defined within element at k iterations, is
expressed by:

(25)

The purpose of the velocity term η, which is chosen based on topological sensitivity, is to nucleate holes. However,
nucleating a hole in a void region is pointless. Hence, g is defined by:
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in which δTL denotes the Lagrangian topological sensitivity that is expressed using:
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Then,  an  iteration  of  optimization  has  finished.  If  the  results  converge,  the  whole  optimization  process  will
terminate. Otherwise, another iteration will begin.

The  property  of  the  level  set  function  deteriorates  as  the  update  of  the  level  set  function  proceeds.  Thus,  re-
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analysis are trivial within a couple of update steps. With this observation, a parameter is set to decide how often finite
element analysis is performed, and it results in a substantial decrease in the whole time of optimization. The flow chart
of the proposed method is shown in Fig. (3).

Fig. (3). Flow chart of proposed method.

6. NUMERICAL EXAMPLES

6.1. Design of a Cantilever

We consider the design of a cantilever that has a span of 3000 mm, height of 1000 mm, Young’s modulus = 100
GPa, and Poisson’s ratio v = 0.3. To simplify the problem, the material is deemed to be isotropic homogeneous. As
depicted in Fig. (4), the design domain is subject to a loading of 100 N at the right center and is fixed on the left side.
The volume fraction is 50%.

Fig. (4). Design domain of a cantilever.
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The whole  design  domain  is  discretized  by  a  60×20 finite  element  mesh.  The  original  design  domain,  midway
design results, final optimal results, and their corresponding level set function are shown in Fig. (5). Initially, the zero-
contour of the level set function is set to be the whole design domain/material domain. The internal holes, which have to
be set initially in conventional level set topology optimization, are not embedded. Then, the material domain shrinks
due to the influence of the volume constraint.  At the same time, the algorithm endeavors to nucleate internal holes
spontaneously without initial assistance. After a couple of steps, the structure reaches its optimal result.

Original designa.
Midway designb.
Midway designc.
Midway designd.
Final designe.

Fig. (5). Zero level set contours and level set surfaces (60×20) of a cantilever.

6.2. Design of Pylon

Then,  the  design  for  the  inverted  Y-shaped  pylon  is  presented.  The  design  domain  is  shown  in  Fig.  (6)  and  is
discretized in a 30×80 mesh. The passive region is composed of the elements that cannot be optimized. It can either be
void or solid from the beginning to the end. At the center of the top side, a loading of 5000 kN is applied. A volume
fraction of 40% is required. As shown in Fig. (7), the optimized result is similar to the real pylon. The Rama VIII bridge
in  the  Thailand  is  shown  in  Fig.  (8).  The  resemblance  between  the  optimized  result  and  the  Rama  VIII  bridge  is
noticeable. They both are typical Y-shaped pylons.
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Fig. (6). Original optimization model for inverted Y-shaped pylons.

Fig. (7). Optimization result for inverted Y-shaped pylons.
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Fig. (8). The Rama VIII bridge.

If there are two loadings of 2500 kN each at the upper side, the design result will be different. The design domain is
shown in Fig. (9), and the volume fraction is 35%. The optimized result is depicted in Fig. (10).

Fig. (9). Design domain of suspension bridge tower.
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Fig. (10). Optimization result for suspension bridge tower.

CONCLUSION

For the sake of improving the accuracy of the conventional level set method and to assist engineers in design jobs
with the level set method, a revised level set method for topology optimization is proposed using the trapezoidal method
and topological sensitivity. Finite element analysis is utilized to discretize the structure. Based on result of the finite
element  analysis,  the  shape  sensitivity  and  topological  sensitivity  are  calculated  to  push  and  pull  the  boundary  of
material domain. In the conventional level set method, an initial guess of the number of internal holes is critical for its
strong influence on the final optimized result. In the proposed method, the internal holes are nucleated spontaneously
without an initial guess of the number of internal holes, and it manifests itself in the design of the cantilever, pylon and
bridge tower. A flow chart of the algorithm implementing the proposed method is also provided. At the end, the design
of  the  cantilever  is  presented  to  validate  the  proposed  method.  To  demonstrate  the  utility,  the  proposed  method  is
applied to the design of the inverted Y pylon and bridge tower. The optimized result for the inverted Y pylon design
matches the practical designs very well.

The presented work only deals with the pylon and bridge tower design with simple loading case. The future work
would extend the method to solve different  optimization problems,  such as dynamics issues.  Also,  the future work
should address the issue of a structure that is meshed with irregular grids.

LIST OF ABBREVIATIONS

= a closed round sphere of radius ε
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D = the total computational domain for the optimization problem

ε = a positive number that approximates 0

ε* = the strain tensor

f = the external loading vector

g = the non-linear constraint

H = the Heaviside function

H = an approximate Heaviside function

h = the linear constraint

h = the bandwidth of the approximate Heaviside

J = the objective function

Ke = the elemental stiffness matrix

K = the global stiffness matrix

λ = the Lamé's first parameter

µ = the Lamé's second parameter

= the Lagrangian multipliers

η = the velocity term defined by topological derivative

Ω = the material domain

ψ = a shape functional

Ф = the level-set function for the domain

Ωe = the open bounded domain with a round sphere of radius

ρe = the element densities field

t = time, used in the evolution equation for the level-set function

σ = the stress tensor

δT
* = the topological derivative of

δT
J = the topological derivative of objective function

δTg = the topological derivative of volume constraint

δTL = the topological derivative of Lagrangian

u = the displacement vector

ue = the elemental displacement vector

vn = the normal component of velocity

v = the design velocity field

vn = the velocity term defined by shape derivative

x = the coordinates of a point in the domain D

=
the coordinates of the center of 
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