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Abstract: Recent events such as natural catastrophes or terrorism attacks have highlighted the necessity to ensure the structural
integrity of buildings under exceptional events. For more than 10 years, the University of Liege is strongly involved in researches
further investigating the response of structures to such exceptional events [1, 2]. The present paper gives a global overview on recent
or on-going developments performed at the University of Liege in the field of robustness of steel building structures subjected to
impact loading leading to the loss of a column. The conducted studies are founded on a combination of experimental, numerical and
analytical  approaches  with  the  final  aim  to  propose  simplified  procedures  useful  for  practitioners  and  allowing  ensuring  an
appropriate level of robustness to structures for the considered scenario.
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INTRODUCTION

Recent  events  such  as  natural  catastrophes  or  terrorism  attacks  have  highlighted  the  necessity  to  ensure  the
structural integrity of buildings under an exceptional event. According to Eurocodes and some other national design
codes, the structural integrity of civil engineering structures should be guaranteed through appropriate measures and one
way to guarantee it is to ensure an appropriate robustness of the structure, which may be defined as the ability of a
structure to remain globally stable in case of exceptional event leading to local damages. However, although global
design approaches such as the activation of alternative load paths or the key element method are provided in modern
codes and standards, no easy-to-apply practical guidelines are provided. The present paper reflects recent researches
realised  at  the  University  of  Liege  with  the  objective  of  proposing  such  practical  guidelines  for  the  activation  of
alternative  load  paths  in  the  structure,  knowing  that  this  design  strategy  generally  leads  to  the  most  economical
solutions.

The behaviour of steel (and composite) structures under the exceptional event “loss of a column” has been recently
investigated through many researches (e.g. from [2 - 17] among others). At the University of Liege, this topic is under
investigation since many years using experimental, numerical and analytical approaches [2 - 8]. The adopted general
philosophy  in  Liege  is  to  observe  the  redistribution  of  the  loads  in  damaged  structures  through  the  activation  of
alternative load paths and to develop analytical methods to predict this redistribution of loads. Knowing how the loads
are redistributed, it is possible to estimate whether or not the remaining elements are able to sustain the additional loads
coming from this redistribution, without causing a progressive collapse of the entire frame and to predict the request in
terms of ductility/deformation capacity for the structural elements, i.e. the structural requirements. The final aim is, on
the basis of the acquired knowledge, to produce easy-to-apply design recommendations/guidelines for practitioners that
ensure an appropriate behaviour of the structure in case of exceptional events.

The present paper summarises researches conducted in the framework of recent [18, 19] or on-going European and
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National research projects and of PhD theses.

In a first section, the paper summarises the performed developments aiming at further investigating the quasi-static
response of  a  structure to  a  column loss.  In particular,  an analytical  model  developed at  the University  of  Liege is
briefly presented and then, an easy-to-use and efficient numerical  tool also developed at  the University of Liege is
described and validated.

In a second section, it is demonstrated how the dynamic effects which could be associated to a column loss further
to an impact can be predicted on the basis of the knowledge of the quasi-static response using a simplified analytical
approach.

QUASI-STATIC RESPONSE OF STRUCTURES

Study of 2D Frames

When a frame suffers from a column loss, two parts can be identified in the structure: the directly affected part and
the indirectly affected (Fig. 1). The directly affected part contains all the beams, columns and beam-to-column joints
located above the lost column. The rest of the structure (i.e. the lateral parts and the storeys under the lost column) is
defined as the indirectly affected part.

Fig. (1). Behaviour of a 2D frame further to a column loss [3].

For a frame losing one of its columns (column AB in Fig. (1), the evolution of the compression force NAB in the lost
member vs. the vertical displacement (u) at the top of this column can be divided in 3 phases as illustrated in Fig. (1).

During Phase 1 (from (1) to (2) in Fig. (1), the column is “normally” loaded (i.e. the column supports the loads
coming from the upper storeys) and the compression load in the column before its disappearance is defined as equal to
NAB normal.

Phase 2 (from (2) to (4) in Fig. (1) begins when the column loss is initiated. During Phase 2, a plastic mechanism
develops in the directly affected part. Each change of slope in the curve of Fig. (1) corresponds to the development of a
new hinge in the directly affected part, until reaching a complete plastic mechanism (point (4) on Fig. (1).

Phase 3 (from (4) to (5) in Fig. (1) starts when this plastic mechanism is formed: the vertical displacement at the top
of  the  column increases  significantly  since  there  is  no  more  first  order  rigidity  in  the  structure.  Due to  these  large
displacements, catenary actions are developing in the beams of the directly affected part, giving a second-order stiffness
to the structure. The role of the indirectly affected part during phase 3 is to provide a lateral anchorage to these catenary
actions: the stiffer the indirectly affected part is, the more catenary action will develop in the directly affected part. In
the extreme situation where the indirectly affected part has no lateral stiffness, then catenary action will not develop and
there will have no Phase 3.

If the displacement associated to point (5) can be predicted, it is then possible to estimate what are the required
deformation  capacities  of  the  structural  elements  and  the  associated  redistribution  of  forces  within  the  frame;
accordingly,  it  is  possible  to  check  if  the  structure  is  sufficiently  robust  to  reach  this  new  state  of  equilibrium.



436   The Open Civil Engineering Journal, 2017, Volume 11 Jean-François et al.

The prediction of the response of the frame during Phase 1 and Phase 2 can be obtained easily while the prediction
the response during Phase 3 is much more complicated as significant deformations and displacements inducing second
order effects are observed during this phase. Accordingly, the research conducted in Liege has mainly been dedicated to
this phase.

In particular,  a fully analytical  model has been developed to predict  the response of a steel  or composite frame
during Phase 3 [3]. The proposed analytical model is founded on the definition of a substructure able to reflect the
behaviour of the global frame (Fig. 2) and allows easily predicting the response of a 2D frame further to a column loss
using the following assumptions:

A static column loss is assumed;
The hinges can develop in the beam cross-section or in the beam-to-column joints;
Columns and beams are the same in all the frame;
Column bases are assumed to be perfectly fixed;
Only the loss of internal columns (i.e. columns which are not at the corners) is considered;
No yielding develops in the indirectly affected part (i.e. its behaviour is assumed to be infinitely elastic).

Fig. (2). Substructure model [3].

The analytical model allowing predicting the response of the so-defined substructure is detailed in [3].

In this model, one of the main parameters affecting the response of the substructure is the behaviour of the yielded
zone which appears first under bending moment and then it is submitted to bending moment and axial load while the
catenary action is developing. These yielded zones are simulated by a multi-layer spring model as illustrated in Fig. (2)
with elastic-perfectly plastic behaviour laws assigned to each spring.
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The use of this multi-layer spring model allows considering situations for which the yielded zone is developed in
beam cross-sections or at the level of beam-to-column joints.

Indeed, in case of a yielded zone developing in a cross-section, each spring represents a part of the cross-section: the
resistance of the spring is obtained by multiplying the area Ai of the part of the cross section represented by this spring
by the yield strength of the steel material (fy) of the considered cross-section while its stiffness is estimated as equal to
EAi/L in which E is the young modulus of the steel material (= 210 000 MPa) and L is the length of the yielded zone
defined according to Chen et al. [20].

In case of a yielded zone developing in a beam-to-column joint, each spring represents a bolt row as defined in
Cerfontaine et al. [21] and its resistance and its stiffness are defined using the component method [21, 22] which is the
design method recommended in the Eurocodes for the characterisation of joints.

Also,  the  effect  of  the  indirectly  affected  part  on  the  response  of  the  directly  affected  part  during  Phase  3  is
simulated through the definition of horizontal springs each side of each story characterised by a stiffness KH (as the
behaviour of the indirectly affected part is assumed to be fully elastic, only stiffness is required for its characterisation).
The method to predict this stiffness at each storey is presented [3, 7].

The proposed analytical model consists in solving a system of N equations with N unknowns as defined in [3]; this
system of equations is easily solvable through the use of a mathematic software. In Liege, a MathLab sheet has been
developed  [23].  The  developed  procedure  has  been  validated  through  comparisons  (i)  to  numerical  FEM  results
obtained performing full geometrical and material non-linear analyses on frames subjected to a column loss (using the
homemade  FEM  software  FINELg  validated  in  Demonceau  et  al.  [6])  and  (ii)  to  experimental  results  from  a
substructure test performed at the University of Liege [5, 6]. The comparison analytical prediction vs. experimental
result is given in Fig. (3) as an example; as a conclusion of the above mentioned comparisons, it can be said that a very
good accuracy of the analytical model is observed.

Fig. (3). Comparison between the analytical prediction vs. the experimental test result [3].

Study of 3D Structures

Having an accurate analytical model to predict the response of 2D frame further to a column loss, it has been studied
[24] how this model could be extended to 3D structures made of linear members (i.e. without accounting for the effect
of the concrete slab).

In this work, a reference 3D steel structure (Fig. 4) has been designed respecting the recommendations from the
Eurocodes. This steel building is made of 2 storeys and 4 bays in each direction (Fig. 4). The beams are made of IPE550
S355 profiles  while  the  columns are  made of  HE400B S355 ones;  these  profiles  have been selected in  order  (i)  to
respect the ultimate and serviceability limit states as defined in the Eurocodes and (ii) to ensure the development of
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significant  membrane  forces  when  simulating  the  column  loss  in  the  structure.  In  addition  to  the  self-weight,  a
permanent load of 3 kN/m2 and a live load of 2 kN/m2 have been assumed as applied to the structure.

Fig. (4). Reference 3D structure.

The exceptional scenario which has been considered is the loss of the column at the ground floor and at the middle
of the reference structure (Fig. 4). A full geometrical and material non-linear analysis has been first performed using the
homemade FEM software FINELg. Then the proposed analytical model has been extended to predict the response of
the 3D structure further to the loss of a column, respecting the assumptions mentioned in the previous section. The
extension of the analytical model consists in considering the response of a 3D structure as the sum of the response of
two 2D frames intersecting at the level of the loss column as illustrated in Fig. (5) and expressing the compatibility of
displacement at the point of column loss.

Fig. (5). Prediction of the 3D behaviour through the prediction of the response of two 2D frames intersecting at the lost column (BX).

Through the comparison of the so-obtained numerical and analytical predictions (Fig. 6), it has been demonstrated
that the so-extended analytical model allows predicting accurately the response of a 3D structure. Starting from the
reference  structure,  a  parametrical  study  has  been  conducted  [24]  varying  the  lateral  restraints  at  different  storeys
(simulating  the  presence  of  bracing  systems);  through  this  parametrical  study,  the  good  accuracy  of  the  proposed
analytical model has also been confirmed.
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Fig. (6). Comparison between the analytical and numerical predictions for the reference 3D structure.

The proposed analytical model has the advantage of allowing the mastering of all the parameters influencing the
response of  a  3D structure  further  to  a  column loss;  however,  the applicability  of  this  model  is  conditioned by the
respect of the previously mentioned assumptions which are quite restrictive.

Accordingly,  to  raise  the  limitation  associated  to  these  assumptions,  it  has  been  decided  to  extend  an  already
existing  homemade  software  named  CEPAO  on  the  basis  of  the  knowledge  gained  from  the  development  of  the
previously mentioned analytical model.

The CEPAO software is a unified package solving automatically the following problems for frame structures: elastic
analysis, second-order elastic-plastic analysis, limit and shakedown analysis, limit and shakedown optimization.

In CEPAO, frame members are modelled by beam-column elements, taking into account different phenomena: P-δ
effect,  distributed  plasticity,  imperfections,  stiffness  degradation,  etc.  3D  plastic-hinges  considering  two  bending
moments and axial  force are described by the normality rule for  plasticity.  The semi-rigid and partial  resistance of
beam-to-column joints could also be considered. The detail on the development of CEPAO can be found in Hoang and
Nguyen [25 - 29].

The advantages of this software in comparison to more sophisticated FEM software is that the computation time is
very limited in comparison to FEM software and the time required for the structure modelling is very limited due to the
fact that it is not required to discretized the structural elements through several finite elements as it is the case when
using FEM software.

Within the presented study, the co-rotational approach has been adapted in CEPAO in order to capture very large
displacement states of  structure,  what  is  required when investigating the robustness of  structures.  The validation is
performed through some numerical examples for the “loss of a column” scenario, comparing the results predicted by
CEPAO to the ones predicted through the FEM software FINELg. Such a comparison is illustrated in Fig. (7) which
shows a very good agreement between the two numerical predictions (more details can be obtained in Hoang et al. [30].
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Fig. (7). Comparison between CEPAO and FINELG results – simulation of the response of the reference 3D structure.

With the so-validated easy-to-use and efficient CEPAO software, it is so possible to predict easily the quasi-static
response of a frame further to a column loss. It will be demonstrated in the following section that the knowledge of this
quasi-static response is required to be able to apply the developed dynamic analytical model predicting the maximum
displacement of a structure with account for the dynamic effects.

DYNAMIC RESPONSE OF STRUCTURES

The dynamic response of building frames further to a column loss has been investigated at the University of Liege
in the last few years [4, 31].

To understand the behaviour of such frames, a basic substructure was first extracted and deeply studied for sake of
simplicity.  Indeed,  frames  losing  a  column proved  to  show many  similarities  in  behaviour  with  the  chosen  simple
system [6]. This substructure is first defined in the following section. Its dynamic response is then briefly explained
before presenting the developed simplified model for the prediction of its response.

The extrapolation of this model to global frames suffering the loss of an internal column is the core topic of this
section and is so finally developed.

Investigation of a Substructure as a Preliminary Study

The  dynamic  behaviour  of  a  basic  system made  of  a  double-beam subjected  to  a  point  load  at  mid-length  and
laterally restrained by a horizontal spring (Fig. 8) was first investigated. In this substructure, the lateral spring stands for
the restraint provided by the indirectly affected part and the force P simulates the column loss (statically or dynamically
applied).
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Fig. (8). Investigated double-beam substructure.

Fig. (9). Investigated double-beam substructure.

As far as dynamic loadings are concerned, the applied force Pdyn(t) is considered to linearly increase during a rise
time tr and then to remain constant at a maximum value equal to P (Fig. 9). If values of P higher than Ppl are considered
(Ppl being the value of the static force causing the formation of the beam plastic mechanism), two main response types
can be observed depending on the loading conditions defined by P and tr. These two behaviour types can be explained
comparing the dynamic curve ud(t) expressing the time evolution of the displacement induced by the application of
Pdyn(t) to the static curve us(t) providing at each particular time t* the static displacement ustat(P*) associated to the value
of the force P*=Pdyn(t*) (Figs. 10 and 11).

Fig. (10). Example of a type 1 response.
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Fig. (11). Example of a type 2 response.

A response  of  type 1  can be  divided in  4  steps  (Fig.  10).  During the  first  one,  before  the  plastic  mechanism is
formed,  the  dynamic  curve  follows  the  static  one.  When  the  plastic  mechanism  forms,  the  dynamic  displacement
remains at first smaller than the static displacement, due to the system inertia. This is step 2, during which the system
accelerates until the dynamic curve reaches the static one. The system enters step 3 when the dynamic displacement
exceeds the static one and then the system decelerates until its velocity is reduced to zero: this is the end of step 3. This
point is the first maximum of the dynamic curve and the corresponding displacement is called uplateau. Indeed, the last
part  of  the dynamic curve is  a  horizontal  plateau.  The maximum dynamic displacement  ud,max  is  equal  to  uplateau  and
higher than the static displacement ustat that would have been reached if P had been statically applied (tr → ∞).

A response of type 2 can be divided in 5 steps (Fig. 11). The three first steps, until uplateau is reached, are exactly the
same as for type 1. The fourth step is also very similar to what happens for a type 1 response: the dynamic curve shows
a horizontal plateau. The difference is that in the present case, uplateau is smaller than ustat and the horizontal plateau is
then limited by the static curve, while it was infinite in case of a type 1 behaviour. There is thus a last step during which
the dynamic curve oscillates around the static curve. At the end, the maximum dynamic displacement is close to ustat.

The dynamic response of a frame losing a column is very similar to the substructure behaviour described above. In
particular, the same two response types are also observed.

A simplified model was developed for the prediction of the substructure dynamic response [4]. This model is based
on energy considerations and consists in writing that the work done by the external load is equal to the sum of the
kinetic energy and the deformation energy. For this simple system, the deformation energy could be expressed as a
function of the vertical displacement at mid-length, considering the work related to the plastic hinges rotation and the
lateral spring elongation. The plastic interaction between the bending moment and the tension force in the plastic hinges
had to be taken into account as well as the elongation of the beams. A differential equation governing the substructure
response (time evolution of the displacement u(t)) was eventually obtained.

As this equation was derived considering the deformation energy corresponding to the first loading of the system
and thus neglecting possible unloading, it is obviously only valid before unloading. In other words, the dynamic curve
u(t) obtained from the resolution of this movement equation is only valid before its first maximum, which means this
model permits the prediction of the first part of the behaviour, until uplateau is reached. After this point, the rest of the
curve can be determined based on the observations mentioned previously: it consists in an infinite horizontal plateau if
uplateau > ustat and in a horizontal plateau followed by the end of the static curve if uplateau < ustat (Fig. 12).

t

ud,

ust

uplateau

(1)

(2)

(3)

(4)
(5)

static 
curve us(t)

dynamic 
curve ud(t)

tr

u



Numerical and Analytical Investigations The Open Civil Engineering Journal, 2017, Volume 11   443

Fig. (12). Shape of the dynamic curve after uplateau.

This  procedure  combining  the  observations  made  on  the  dynamic  curve  shape  and  the  model  based  on  energy
considerations permits the prediction of the entire dynamic curve corresponding to given loading conditions (P and tr),
provided  the  static  response  is  known.  It  was  demonstrated  to  give  very  good results  (Fig.  13).  However,  it  is  not
detailed herein because the model which is developed in the following section is a generalisation of this procedure that
is valid for this simple substructure as well as for whole frame structures suffering the loss of a column.

Fig. (13). Validation of the substructure model.

Model Predicting the Dynamic Response of Structures

This section presents a simplified procedure permitting the prediction of the dynamic response of a frame losing an
internal column. Thanks to this model, no dynamic numerical analysis is required any more to assess the robustness of
frame structures suffering a dynamic column loss. However, the structural response assuming a static behaviour has
first  to  be  determined  before  the  proposed  model  can  be  used  to  derive  the  dynamic  response,  which  justifies  the
importance of the investigations presented in the previous sections of this paper.

The hypotheses that have been made to develop the model are first presented before detailing the development of
the model equation. This model is then used as part of a global procedure permitting the establishment of the dynamic
displacement curve. The input data that are required to determine the structural dynamic response using the proposed
method are clearly detailed in the following section. Finally, the way the robustness of a frame structure dynamically
losing a column can be assessed based on the developed simplified procedure is explained.

Hypothesis

The presented model does not take account of strain rate effects, which means it assumes that the deformation rate is
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sufficiently low for the material behaviour law to remain the same under dynamic loading as it is in static, which looks
to be a reasonable assumption in case of impact loading.

Besides, no damping is introduced in the system, which constitutes a conservative approach. Moreover, it has been
shown that damping does not induce a significant decrease of the maximum dynamic displacement [32], which is the
parameter the developed procedure aims at predicting.

The presented model is also developed assuming that the deformation mode of the structure due to the column loss
is the same if the column is statically or dynamically removed; and that the deformation energy corresponding to the
reach of a given displacement u is equal in both cases. The comparison of the model predictions to results of numerical
dynamic finite element analyses proved this assumption to be valid (Fig. 18).

The proposed model can be used for 3D structures as well as for 2D frames and is not dependant on the considered
material  or behaviour law, provided the static structural response is known. However,  it  has only been applied and
validated for 2D steel frames so far.

Model Equation

The model is based on the following energy equation (Eq. (1)), expressing that the work done by the external forces
is equal to the sum of the kinetic energy and the deformation energy.

(1)

The kinetic energy is given by:

(2)

where Mg is the generalised mass of the system (the procedure to obtain this generalised mass is detailed later on).

As far as the deformation energy is concerned, it basically includes the energy related to the plastic hinges rotation
and the indirectly affected part deformation. To evaluate the energy dissipated in the plastic hinges, the M-N interaction
should  be  considered.  Besides,  the  deformation  of  the  indirectly  affected  part  can  be  fully  elastic  or  elasto-plastic
depending  on  the  load  level,  and  is  rather  complex  to  determine.  This  makes  the  global  deformation  energy  very
difficult to evaluate based on this approach.

An assumption was thus made according to which the deformation energy corresponding to a given value of the
displacement u is the same no matter if this displacement is reached statically or dynamically. Under this assumption,
the deformation energy can be computed based on the static response only. Indeed, it is then equal to the work done by
the external forces to statically reach the considered displacement:

(3)

where p represents the vertical loads applied to the structure in the initial situation, before the critical column begins
to fail (for example, distributed loads on the beams); N is the load in the column to be lost (=NAB normal as defined in Fig.
(1); P is the load simulating the column loss applied downward at the top of the lost column (varying from 0 to N) -
(Fig. 14).

Fig. (14). Simulation of a column loss – the lost column is replaced by a vertical load N0 and the loss of the column is simulated by
the application of a downward load P varying from 0 to N0.
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The work done by the external loads during the dynamic deformation of the system is:

(4)

The loads N and p remaining constant from the time zero and thus for any value of the displacement u, the work
done  by  these  forces  for  a  given  displacement  is  the  same  no  matter  if  this  displacement  is  reached  statically  or
dynamically (under the assumption that the deformation mode of the structure is the same is both cases).

Finally, Eq. (1) can be written as follows:

(5)

or

(6)

Deriving according to time and dividing by , it comes:

(7)

This  differential  equation governs  the  movement  of  the  system.  However,  an important  remark has  to  be  made
concerning its domain of validity. If the system remains perfectly elastic, the deformation energy corresponding to a
given value of the displacement is unique and can be computed as stated in Eq. (3). But if yielding has occurred, the
deformation energy corresponding to the reach of a given value of the displacement is not the same if this displacement
is reached for the first time or after unloading. Eq. (3) gives the deformation energy for the first loading. Consequently,
Eq. (7) is valid:

In the elastic range,
Until the first maximum of the obtained curve u(t) after yielding has occurred.

Procedure to Establish the Dynamic Displacement Curve

To solve Eq. (7) governing the system movement, limit conditions have to be provided. To determine the first part
of the dynamic curve, these conditions simply express that, at the time zero, the displacement of the system is the one
corresponding to the initial position of the structure (before the column is removed) and its velocity is zero. It is then
possible to obtain the time evolution of the displacement u(t). However, if yielding has developed in the structure, this
curve is only valid until its first maximum.

As explained previously, two different response types can be observed according to the value of this first maximum,
called uplateau. If uplateau is higher than the static displacement, a response of type 1 is observed and the part of the curve
after this first maximum simply consists in an infinite horizontal plateau Fig. (18a-c). The entire dynamic curve can
thus be easily obtained. In this case, the maximum dynamic displacement is equal to uplateau.

If uplateau * ustat, a response of type 2 is observed. The horizontal plateau is then limited by the static curve and the last
part of the dynamic curve consists in oscillations around the static curve (Fig. 18d, e). A rough approximation of the
entire dynamic curve could then consist in the first part obtained by the resolution of Eq. (7) followed by a horizontal
plateau and then the end of the static curve, as suggested in the section dedicated to the substructure model.

However, it has been observed that the amplitude of the dynamic curve oscillations around the static curve after the
level of uplateau might be such that the maximum dynamic displacement reached is quite significantly higher than ustat

(Fig. 18d) shows an example even if ud,max is not so bigger than ustat in that case, but the difference appeared to be much
more significant  in  other  cases).  The procedure has thus been improved as  follows.  Knowing uplateau,  the end of  the
horizontal plateau, consisting in its intersection with the static curve us(t),  can be determined. Then, Eq. (7) can be
solved again, with new initial conditions corresponding to this point where the displacement is uplateau and the velocity is
taken equal to zero. Again, the new curve u(t) which is obtained from Eq. (7) is only valid until its first maximum. This
procedure can be repeated several times (resolution of Eq. (7) with new limit conditions each time) to determine the
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successive parts of the dynamic curve, until the first maximum of the curve obtained from the resolution of Eq. (7) is
higher than ustat. When it is the case, the maximum dynamic displacement is reached and the end of the dynamic curve
can simply be approximated by an infinite horizontal plateau at the level of ud,max.

This procedure is applied to examples presented later on.

Fig. (15). Deformation mode considered to determine the generalised mass.

Required Input Data

To apply the developed simplified model, the static response of the frame has to be known; this can be obtained
using  the  tools  presented  in  the  previous  section.  Besides,  it  is  not  sufficient  to  establish  the  static  response  for  P
statically increasing from zero to N. Indeed, as higher displacements are likely to be reached under dynamic loading, the
static response needs also to be known for values of the displacement higher than ustat. Basically, the static curve should
be determined as far as possible, until a limit of resistance, stability or ductility is reached in any part of the structure.

Even though the main static data which is directly used in the model is the curve (P, u)stat, the determination of the
static evolution of the internal  forces when the displacement at  the top of the failing column increases is  also very
important to assess the robustness of the structure. Besides, the location of the plastic hinges involved in the plastic
mechanism of the frame directly affected part is also needed to estimate the value of generalised mass to be used in the
model as explained here after.

In the developed model, the column loss is characterised by the function Pdyn(t) defining the way the critical column
bearing capacity is supposed to decrease. Any function can be chosen.

The generalised mass to be used in the model (Mg) is computed according to Eq.(8), considering the deformation
mode corresponding to the formation of the global beam plastic mechanism in the structure directly affected part.

(8)

where  m(x)  is  the  distributed  mass  and  ϕ(x)  is  the  vertical  displacement  corresponding  to  the  considered
deformation  mode,  with  ϕmax  =1  (Fig.  15).

Under static conditions, if the plastic mechanism forms in the directly affected part of the structure for a value of P
smaller than N (which is likely to occur), the plastic hinges forming at the centre of the directly affected part are not
always located exactly at the beam ends but at a distance a from these extremities (Fig. 15). It is due to the fact that,
while P < N, the resultant of these two forces applied at the lost column top consists in an upward force and then the
maxima of the bending moment diagram are not located at mid length of the directly affected part but at a distance a
where the plastic hinges thus form.

Under  dynamic  loadings,  two  different  situations  can  occur.  If  the  column  removal  is  rather  slow,  the  plastic
mechanism is the same as under static conditions. But if the column loss is quick enough, P reaches the value of N
before the system has had the time to deform sufficiently for  the plastic  mechanism to develop;  even if  the plastic
mechanism forms for P < N under static loading. Indeed, due to its inertia, the system deforms slowly at the beginning,

2( ) ( )gM m x x dx    
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in such a way the dynamic displacement is at first smaller than the static displacement corresponding to the applied
load. Consequently, in such a case, P = N when the plastic mechanism develops; so the plastic hinges in the middle of
the directly affected part form at the beam ends, where the sagging bending moment is maximum.

As the static response is supposed to be known, the generalised mass to be used in the model is computed assuming
the static deformation mode. For relatively slow column losses, the dynamic deformation mode is the same as in static
and the assumption is thus correct. For quicker column removals, the plastic hinges under sagging moment form at mid
length of the directly affected part (a = 0). In such cases, assuming the static deformation mode leads to overestimate
the value of Mg, and thus the maximum dynamic displacement, which is on the safe side. Moreover, the comparison of
results obtained with this approach to dynamic finite element analyses proved the method not too conservative either
(see examples given later on).

The computation of the generalised mass is made below under the following assumptions:

The vertical displacement is the same at all storeys;
The position of the plastic hinges is the same at all storeys;
The beams are straight between two plastic hinges;
The mass is uniformly distributed along the elements.

It leads to:

(9)

where:

nb is the number of double-beams above the lost column;
mb is the uniformly distributed mass along the beams (in kg/m), assumed to be the same for all beams in Eq. (9);
Mc is the total mass of the columns above the lost column (if all the storeys have a height hc, nc is the number of
columns above the lost  column (nc  = nb  –  1)  and mc  is  the uniformly distributed mass along the column (in
kg/m), then) Mc = nc .hc .mc).

A last parameter which has to be known in order to be able to predict the response of a structure further to an impact
loading  is  the  value  of  the  column loss  time  tr  associated  to  the  considered  impact.  For  the  moment,  no  analytical
procedure to predict this value is available. However, in the framework of the Robustimpact European RFCS project,
such an analytical model is under development in strong collaboration with RWTH (University of Aachen) and some
promising results have already been obtained; such a model should be made available at the end of the project.

Robustness Assessment

Knowing  the  maximum dynamic  displacement  suffered  by  a  frame  losing  a  column,  it  is  possible  to  assess  its
robustness, i.e. to determine if the structure elements are ductile and resistant enough to sustain the considered column
removal.

Indeed, many finite element analyses demonstrated that the distribution of internal forces in a frame corresponding
to a given value of the displacement u is the same no matter if this displacement is reached statically or dynamically
(provided  this  displacement  is  reached  for  the  first  time,  the  unloadings  and  reloadings  associated  to  the  system
oscillations are not considered).

Consequently, if the static response is known, the dynamic maximum displacement can be determined using the
developed model; and then the corresponding distribution of internal forces can be deduced from the static response. If
the structure is able to statically reach the displacement ud,max, then the dynamic robustness is ensured. Depending on the
dynamic loading conditions, this maximum displacement ud,max to be sustained is close to ustat or significantly bigger.

� �

2
2

0
2 1

2
2

3

l a l

g b b b cl a

b b
c

xM n m dx m dx M
l a

n m
     l a M

�

�

� �� 	
 � � � � � � � �
 �� ��� �
 �� �
� �


 � � � �

� �



448   The Open Civil Engineering Journal, 2017, Volume 11 Jean-François et al.

APPLICATION OF THE PROPOSED MODEL

Considered Structure

The considered example is the 2D frame of Fig. (16) suffering the loss of column 2. This frame is braced at one
side. The columns are HEB300 profiles in S355 steel and the beams are IPE500 in S235; all the elements are bent about
their major axis. The beam-to-column joints are rigid and full-strength ones. All storeys are 3,5 meters high and all
spans are 7 meters long.

The considered loading simply consists in uniformly distributed loads p = 50 kN/m on all beams; the beam and
column self-weight is also taken into account. This loading induces a compression force N = 1438 kN at the critical
column top.

Fig. (16). Frame used as work example for the application of the dynamic analytical simplified model.

Input Data

The  static  response  has  been  numerically  established.  The  curve  of  the  vertical  displacement  u  at  the  removed
column top versus the value of the static force P is represented in Fig. (17). The displacement corresponding to the
complete static column loss (P = N) is ustat = 0,79 m.

Fig. (17). Static response of the work example frame losing column 2.

As far as dynamic column losses are concerned, a linear decrease of the compression force in the failing column has
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been considered (Pdyn (t) as given in Fig. (9), with P = N).

Fig. (18). Comparisons of analytical predictions to numerical results.

  

(c) tr = 20 seconds 

 

(d) tr = 40 seconds 

 

(e) tr = 80 seconds 

0

0,2

0,4

0,6

0,8

1

1,2

1,4

1,6

1,8

10 15 20 25

t (s)

u (m)

ustat

udyn - model

udyn - Finelg

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

30 35 40 45

t (s)

ustat

udyn - Finelg

udyn - model

u (m)

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

60 65 70 75 80 85

t (s)

ustat

udyn - Finelg

udyn - model

u
(m)

 

(a) tr = 0 second 

 

(b) tr = 5 seconds 

0

0,2

0,4

0,6

0,8

1

1,2

1,4

1,6

1,8

0 0,5 1 1,5 2

t (s)

udyn - model

udyn - Finelg

u (m)

ustat

0

0,2

0,4

0,6

0,8

1

1,2

1,4

1,6

1,8

0 2 4 6 8

t (s)

u (m)

ustat

udyn - Finelg

udyn - model



450   The Open Civil Engineering Journal, 2017, Volume 11 Jean-François et al.

A mass of 7850 kg/m3 has been taken into account for the steel elements (beams and columns). Besides, a uniformly
distributed  mass  of  5096,84  kg/m has  been  associated  to  all  beams  (corresponding  to  the  load  p  =  50  kN/m).  The
generalised mass has been computed accordingly, using Eq. (9) and considering a = 0,5 m (deduced from the static
response):

(10)

Dynamic Response

A program has been developed using the software Matlab®,  making the determination of  the dynamic response
according to the procedure explained previously very easy. The results obtained using the proposed model agree very
well with the numerical predictions obtained from dynamic finite element analyses performed with Finelg, as shown in
the following graphs (Fig. 18) for different speeds of the column removal (values of tr from 0 to 80 seconds).

CONCLUSION

The investigations presented in this paper reflect part of the research performed at the University of Liège in the
field of robustness,  with the final aim to provide simplified procedures to assess the robustness of frame structures
suffering a column loss, for easy practical use.

In  a  first  section,  this  paper  summarises  the  performed  developments  assuming  a  quasi-static  response  of  the
structure, i.e. no dynamic effect are induced by the column loss. In particular, an analytical model has been developed
and is briefly presented in the present paper. It is demonstrated that the proposed analytical model allows predicting
with a very good accuracy the quasi-static response of a 2D and 3D steel structure further to a column loss if some
limiting assumptions are respected. Then, to raise these assumptions, an easy-to-use and efficient numerical tool has
been developed and validated through comparisons to FEM simulation results.

In a second section, it is demonstrated how the dynamic effects which could be associated to a column loss can be
predicted on the basis of the knowledge of the quasi-static response of a structure. In particular, a simplified analytical
model  is  proposed to predict  the maximum deformation associated to the dynamic loss  of  a  column.  Knowing this
maximum displacement, it is then possible to predict the redistribution of forces within the considered structure and so
to assess the robustness of this structure. The proposed model is finally applied to a work example.
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