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Abstract:

Inroduction:

The objective of the present paper is to analyze dynamic response of the Timoshenko thin-walled beam with coupled bending and
torsional vibrations under deterministic loads. The governing differential equations were obtained by using Hamilton’s principle. The
Timoshenko beam theory was employed and the effects of shear deformations, Rotary inertia and warping stiffness were included in
the present formulations. Dynamic features of underlined beam are obtained using free vibration analysis.

Methods:

For  this  purpose,  the  dynamic  stiffness  matrix  method  is  used.  Application  of  exact  dynamic  stiffness  matrix  method  on  the
movement  differential  equations  led  to  the  issue  of  nonlinear  eigenvalue  problem  that  was  solved  by  using  Wittrick–Williams
algorithm  .  Differential  equations  for  the  displacement  response  of  asymmetric  thin-walled  Timoshenko  beams  subjected  to
deterministic loads are used for extracting orthogonality property of vibrational modes.

Results:

Finally the numerical results for dynamic response in a sample of mentioned beams is presented. The presented theory is relatively
general and can be used for various kinds of deterministic loading in Timoshenko thin-walled beams.

Keywords: Thin-walled beams, Timoshenko beam theory, Exact dynamic stiffness matrix method, Wittrick–Williams algorithm,
Deterministic dynamic loads, Asymmetric cross section.

1. INTRODUCTION

Lightness of thin-walled beams is one of the reasons for their high performance. These beams are widely used in
structures and aerospace industries. If the cross section of the thin-walled beams is mono- symmetric or asymmetric, the
center of mass and the center of shear will not fit in each other. This causes a relative complexity in the behavior of
these beams. Because in such a case, the bending and torsion modes are coupled and ultimately make it difficult to
precisely predict the dynamic characteristics of these beams. One of the most powerful tools for solving such problems
is the use of the dynamic stiffness matrix method. This method has advantages over finite element method. In the finite
element method, the characteristics of an element is extracted using assumed shape functions for that element, so they
are not exact. In dynamic stiffness matrix method, the dynamic characteristics are obtained from the analytical solution
of the governing differential equations, so we can say that they are exact. Over the last few years, many studies have
been performed in the field of formulation of dynamic stiffness matrix (DSM) of beams. The dynamic stiffness matrix
of a Timoshenko beam was investigated by Cheng [1] for the first time. Williams and Howson [2] considered the effect
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of axial load on the natural frequencies of Timoshenko beam. Banerjee [3] studied a beam with a section having one
axis of symmetry and derived some explicit terms for the stiffness matrix arrays regardless of axial load effect. Banerjee
and Williams [4] investigated dynamic stiffness matrix for coupled flexural-torsional vibration of Timoshenko beam.
Banerjee  et  al.  [5]  studied  warping  effect  on  the  formulation  of  dynamic  stiffness  matrix.  Bercin  and  Tanaka  [6]
surveyed  coupled  flexural-torsional  vibrations  of  uniform  beam  having  single  symmetric  section,  considering
conventional support conditions. Li Jun et al. [7] derived the free vibrations of thin-walled Timoshenko beam under
axial load, in which the effects of axial load, warping stiffness, shear deformation, and rotational inertia were taken into
consideration and it was used from continuous model. Rafezy and Howson [8] derived the dynamic stiffness matrix of a
three-dimensional (3D) shear-torsion beam with an asymmetric cross-section. The beam had the unusual theoretical
property, so that, it allowed only for shear deformation but not bending deformation. Ghandi et al. [9] replaced Euler-
Bernoulli theory with Timoshenko theory when the external layer of thin-walled beam is modeled and they assumed
that the thin-walled part of the beam could have either open or closed section shape and would create flexural, shear,
warping and Saint- Venant rigidities. Ghandi et al. [10] also derived the dynamic stiffness matrix of uniform beam with
asymmetric cross section and elastic support under axial load. The mentioned beam consisted of an external enclosed
thin-walled layer that was combined with a shear resistant filled core. Ghandi and Shiri [11] investigated the effect of
the eccentricity of axial load on the natural frequencies of asymmetric thin-walled beams using exact dynamic stiffness
matrix method.

Many researches have been performed in the field of the response of beams with symmetric cross-section subjected
to deterministic and random dynamic loads. Eslimi-esfahani et al. [12] analytically investigated the dynamic response
of beam with coupled flexural-torsional vibration subjected to deterministic and stochastic dynamic loads for the first
time.  In  another  study,  Eslimy-Isfahany  and  Banerjee  [13]  analytically  calculated  dynamic  response  of  beam with
constant axial load with coupled flexural-torsional vibration under definitive and stochastic dynamic loads by using
modal  analysis  method.  Li  Jun  et  al.  [14]  derived  an  explicit  term  for  dynamic  response  of  single  symmetric
Timoshenko beam subjected to stochastic excitations. Following the previous work, Li Jun et al. [15] derived the effects
of  axial  load  by  the  calculation  of  dynamic  response  of  single  symmetric  Timoshenko  beam  against  stochastic
excitations.

In most of these researches, cross-section of the beam was mono-symmetric and Euler-Bernouli theory was used to
model bending of beam. Moreover, to model beam bending, Euler-Bernouli theory is not capable of providing correct
results when beams with large sections compared to their lengths or extraction of natural frequencies of higher modes
are under study. In such conditions, Timoshenko beam theory in which, shear deformation and rotary inertia parameters
are considered,  should be employed. In this paper,  considering the effect  of definitive dynamic load,  the analytical
dynamic response of 3D flexural-torsional beam with asymmetric cross-section will be investigated by the help of exact
dynamic stiffness matrix and modal analysis methods.

2. THEORY

The cross-section of the intended beam is shown in Fig. (1). This beam is a uniform 3D beam with asymmetric
cross-section. The Timoshenko beam theory is used for modeling the bending beam. This beam has flexural rigidities of
EIx and EIy in x - z and y - z planes, torsional warping rigidity of EIω, torsional Saint- Venant rigidity of GtJt and shear
rigidities of GtAxt and GtAyt, where Gt is the shear modulus, Jt is the section torsional constant, Axt and Ayt are equivalent
shear section in x and y directions, respectively. In Fig. (1), the center of gravity is denoted by C, and shear center is
shown  by  O.  The  axes  crossing  the  center  of  gravity  and  shear  center  are  known  as  mass  axis  and  bending  axis,
respectively. The origin of the coordinate system, is placed at O, x and y axes are in the direction of main axes of the
cross-section and z axis coincides with the bending axis. The location of the point C in the co-ordinate system Oxy is
given by (xc, yc). The beam total mass is distributed along its length as uniform distributed load and m is the beam mass
per unit length. The flexural translation in the x and y directions and torsional rotation about the z-axis are represented
by u (z, t), v(z, t) and φ(z, t), respectively. During the translation phase u(z, t) and v(z, t)) the shear center moves to O´
and the mass center C moves to C´. During the rotation phase (φ(Z, t)), the mass center moves additionally from C´ to
C˝. The external loads applied on the thin-walled beam include unit length forces fx (z, t) and fy (z, t), which are applied
on the bending axis in the directions of x and y axes, respectively, unit length bending moment mx (z, t) in the x - z plane
around y axis, unit length bending moment mx(z,t) in the x-z plane around y axis and also unit length torsion moment g
(z, t) that is applied around the bending axis (Fig. 2).
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Fig.  (1).  (a)  3D  thin-walled  beam  with  a  length  of  L  and  asymmetric  section,  (b)  deformed  shape  of  the  cross-section  after
translational and torsional displacements.

Fig. (2). Externally applied loads on a thin-walled beam.

The differential equations governing the beam moment are as five coupled partial differential equations that are
defined bellow using Hamilton’s principle:
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(1b)

(1c)

(1d)

(1e)

where  θx  (Z,  t)  and  θy  (Z,  t)  are  the  rotation  of  the  cross-section  due  to  bending  in  the  x-z  and  y–z  planes,
respectively. p, is the material density of the thin-walled beam.

Also by using Hamilton’s principle, the expressions for shear forces Qx (z, t) and Qy (z, t), bending moments Mx (z, t)
and My (z, t), torsional moment T(z, t) and Bi-moment B(z, t) can be obtained as follows:
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(2f)

3. FREE VIBRATION ANALYSIS

In order to determine natural frequencies and vibration modes, it is required to perform the undamped free vibration
analysis of the system. For this purpose, the external applying forces are considered equal to zero and thus, the above
equations could be written as follows
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(3d)

(3e)

In order to analyze the free vibration, the answers of u (z, t), v (z, t) θ (z, t), and θ (z, t) are written as follows

(4)

In the above relations, r = 1,2,3... represents the vibrational mode number.

Substituting equation (4) into equation (3), gives

(5a)

(5b)

(5c)

(5d)

(5e)

By applying the dynamic stiffness matrix method on the above governing differential equations, we can obtain the
natural frequencies and mode shapes. For this purpose, [9 - 11] references can be seen.

Equations (5a- d) can be rewritten as follows:

(6a)
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(6d)

4. EXTRACTION OF THE ORTHOGONALITY PROPERTIES

The most significant property of the mode shapes is that they form a set of orthogonal mathematical functions. To
analyze the forced vibrations,  the orthogonality condition would have to be used.  The orthogonality conditions are
applied  to  any two different  modes,  they cannot  be  applied  to  two modes  having the  same frequency.  For  discrete
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systems, the orthogonality conditions are available in all references related to the dynamics of structures. The studied
beam in this paper is a distributed properties system. The vibration mode shapes derived for beams with distributed
properties  have  orthogonality  relationships  equivalent  to  those  for  the  discrete  parameter  systems.  Orthogonality
conditions for three-dimensional asymmetric thin-walled Timoshenko beam is derived in this paper as follows:

Substituting equation (6c) into (6a) and also equation (6d) into (6b) gives

(7a)

(7b)

Multiplying (7a) by Us (z) (sth vibrational mode) and integrating with respect to Z gives

(8)

If the last integration in this equation is performed by parts, it is found to give

(9)

The  integrated  term is  nil  because  from equations  (6c)  and  (2d),  it  can  be  seen  that  the  contents  of  the  square
brackets are equal to the shear force which vanishes at the boundaries z = 0 and z = L at a free end. Also at a fixed end,
simply supporting the end value of U (z), it is equal to zero and then the above integrated term is nil.

(10)

Following this, again the integrated term vanishes since the bracketed term is equal to bending moment which is
zero at the extremities, so finally the equation (8) is expressed as follows:
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(13)

By performing the similar operation for equation (7b), the following result is finally obtained

(14)

By dividing equation (6c) to GtAxt and (6d) to GtAyt find that

(15a)

(15b)

When equation (15a) is differentiated with respect to z, multiplied by  and then integrated with
respect to z, finally it gives
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(17)

By subtracting equation (16) from (17), the following relation is obtained.

(18)

By performing the similar operation for equation (15b), the following result is finally obtained
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When these last two equations are subtracted, they give

(22)

Multiplying equation (15b) throughout by  and integrating with respect to z, give:

(23)

When the suffices r and s in this last equation are interchanged, the equation becomes

(24)

Subtraction now reveals that,

(25)

If equation (18) and (22) are now added together, they give

(26)

Also if equations (19) and (25) are now added together, they give
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(27)

Comparison of equation (26) with that of equation (13) reveals that

(28)

Also the comparison of equation (27) with (14) gives

(29)

In this step, equation (5e) is written for the rth and sth modes; these are multiplied throughout by Фs (Z) and Фr (Z)
integrated with respect to z. Finally it gives

(30)

Equations (28), (29) and (30) may be added together to give

(31)

In the above equation, if r = s, then the following equation is obtained.
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The above relation is satisfied because, (ω2
r-ω

2
r) = 0, so the result of the integral is a constant value as follows,
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(33)

For r ≠ s, so that (ω2
r-ω

2
r) ≠ 0 therefore, to derive equation (31), we must have the following relation:

(34)

Equations (33) and (34) can be shown as the following general form

(35)

The above equation shows the orthogonality condition for different mode shapes of the thin-walled Timoshenko
beams with asymmetric cross-section. µ is the generalized mass in the rth mode, and δsr the Kronecker delta function
defined as follows:

(36)

With  the  free  vibration  natural  frequencies,  mode  shapes  and  orthogonality  condition  described  above,  we  can
calculate dynamic response of the Timoshenko thin-walled beam under deterministic loads.

5. DYNAMIC RESPONSE ANALYTICAL CALCULATION

Now, the partial differential equations (1) are taken into consideration that are required to be solved for the applied
external forces of fx (z, t), fy (z, t), mx (z, t), my (z, t), and g (z, t). Assuming that the eigenvalue problem is solved for
extracting natural frequencies and modes, the response against the applied loads is obtained from the linear combination
of the modes as follows:
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In the above equations, qr (t) is the modal coordinate (time coordinate) of the rth mode. As a result, the responses u
(z, t), v (z, t), θx (z, t), θy (z, t) and ϕx (z, t) are defined as the total participation effects of each mode. The rth term in the
series of equation (37) represents the participation rate of the rth mode.

Substituting equations (37) into equations (1) and the introduction of the non-dimensional variable  then
yields

(38a)

(38b)

(38c)

(38d)

(38e)

Substituting equations (5) into equations (38) gives:
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In this step, each sentence of (39a) in Us , each sentence of (39b) in Vs, each sentence of (39c) in Θxs, each sentence
of (39d) in Θys and each sentence of (39e) are multiplied by Фs and integrated throughout the beam. After adding the
obtained equations, the equation becomes
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(40)

The above equation is as follows after simplifying and changing the order of integral and sign 

(41)

Regarding the property of the orthogonality of modes given in (35), it was observed that for all values of r ≠ s, the
value of the two integrals on the left of the above equation is eliminated, only for r = s the following equation will
remain:
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The above equation can be expressed in the following form

(43)

By introducing the following parameters,

(44a)

(44b)

(44c)

(44d)

(44e)

Now, equation (43) is rewritten as follows

(45)

Therefore, there are an infinite number of equations similar to equation (45) and one equation for each mode. The
partial differential equation (1) for unknown functions u (z, t), v (z, t) θx (z, t) θy (z, t) and Ф (z, t) are transferred into an
infinite set of ordinary differential equations (45) in terms of qr(t) unknowns.

For the applied dynamic loads of fx (z, t), fy (z, t), mx (z, t), my (z, t) and g(z, t) the unknown system functions u (z, t),
v (z, t), θx (z, t), θy (z, t) and ϕ (z, t) could be determined by solving the modal equations in terms of qr (t). The equation
of each mode is independent to the other modes; thus, it could be solved separately. For solving equation (45), which is
similar to the form of movement equation for single degree of freedom (SDOF) system, Duhamel's integral is used.
Therefore, the answer of equation (45) is defined as:

(46)

After determining and qr (t), by using equations (37) and (46), system response to arbitrary dynamic forces fx (z, t), fy

(z, t), mx (z, t), my (z, t) and g (z, t) is as follows
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(47c)

(47d)

(47e)

The obtained responses can be used for any arbitrary deterministic loading. In the following, the response against
deterministic harmonic load is calculated using equations (47) for instance.

In this part, it was assumed that the centralized harmonic forces having Fxi amplitudes are applied in the direction of
x  axis in the points Zi  = ai  the forces with Fyi  amplitudes are applied in the direction of y  axis in the points Zi  = bi,
bending  moments  having  Mxi  amplitudes  are  applied  in  x-z  plane  around  y  axis  and  in  the  points  Zi  =  Ci,  bending
moments with Myi amplitudes are applied in y-z plane around x axis and in the points Zi = di, and torsional moments with
Gi amplitudes are applied around z axis and in the points Zi = ei, where i = 1,2,3,.....,N. The mentioned applied loads are
defined as follows:

(48a)
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(48d)
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where, ωi is the rotational frequency of the applied loads.

In this state, by using equations (44), the generalized loads functions become,
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Finally, the response of u (z, t), v (z, t), θx (z, t), θy (z, t) and ϕ(z, t) to assumed applying loads is as follows
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(50a)

(50b)

(50c)
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(50e)

6. NUMERICAL RESULTS

The following example is presented in order to validate the formulation proposed in the present paper.

In  this  example,  a  thin-walled  cantilever  beam  having  semicircular  section  with  one  axis  of  symmetry  is
investigated.  The  physical  and  geometrical  specifications  of  the  studied  section  are  as  follows  (Fig.  3):

In this example, it was assumed that unit harmonic forces with unit amplitude are applied to the tip of the cantilever
beam and the transitional bending displacement, rotational and torsional angles were calculated at the cantilever beam
tip under the applied harmonic load with different frequencies. For calculating the response, the first five modes of
vibration were used. Therefore, the first five bending–torsion coupled natural frequencies and vibrating modes were
first  calculated with  the help of  the dynamic  stiffness  matrix. The  calculated natural  frequencies are  presented in
Table 1.

Table 1. The first five natural frequencies.

f (HZ) ω(Rad/Sec) Frequency order
1 399.0379 63.5089
2 863.4747 137.4263
3 1733.26 275.8580
4 3023.24 481.1625
5 4020.25 639.8936
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PaE 9109.68 *�   , 481026.9 mI y
�*�    ,      481077.1 mIx

�*�   
6121052.1 mI �*�� ,   242 10998.5 mrm �*�              , 1.0835. �� mkgm

mL 82.0�   ,    myc 0.0�  ,    mxc 0155.0�  ,     PaG 9105.26 *� ,    491064.1 mJ �*�
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Fig. (3). Beam cross-section used in numerical example.

Then, for each mode, the values of µ were calcluted. For the first five modes, the µ as follows:

By using equations (50) and considering Fx = 0, Mx = 0, G = 0 and Fy = 1 as well as the location of the point, b =
0.82m, the intended responses were calculated at the cantilever edge point and plotted in the semi-logarithmic diagrams
of Figs. (4, 5, and 6). In the mentioned figures, the absolute magnitudes of the obtained values were considered on the
vertical axis, which is a logarithmic axis.

Fig. (4). Dynamic transitional bending displacement of thin-walled beam at its tip for different frequencies of the applied load.

1 2 3 4 54.5944, 4.5453, 2.5601, 3.6127, 4.7357# # # # #� � � � �  
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Fig. (5). Dynamic rotational bending displacement of thin-walled beam at its tip for different frequencies of the applied load.

Fig. 6. Dynamic torsional displacement of thin-walled beam at its tip for different frequencies of the applied load.

CONCLUSION

In the present study, an analytical method is proposed for determining the dynamic response of asymmetric thin-
walled beams subjected to different types of centralized and distributed definitive dynamic loads.  In order to solve
vibration problems, the study used accurate dynamic stiffness matrix. Since the dynamic stiffness matrix is derived
from analytical solution of the differential equations of movement, it makes it possible to calculate natural frequencies
and vibrating modes accurately and without any loss in the precision. The natural frequencies and mode shapes were
obtained by using Wittrick–Williams algorithm.

Due  to  the  general  shape  of  the  beam (i.e.  a  perfect  asymmetric  section),  the  mass  and  shear  centers  were  not
coincident  and  thus,  flexural  and  torsional  vibrations  were  observed  to  be  dependent  on  each  other.  Accordingly,
determining the analytical response of the 3D thin-walled beam with asymmetric section against dynamic deterministic
loads is considered as a very complicated problem. Using the introduced dynamic stiffness matrix in combination with
modal analysis method, this complexity can be addressed.
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By using  the  formulation  presented  in  this  paper,  the  dynamic  response  of  members  with  arbitrary  asymmetric
section can be derived also with different boundary conditions under any arbitrary applied definitive dynamic loading at
various points.
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