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Abstract:

Background:

The lack of codified standards for the design of automated rack supported warehouses forced engineers to use personal experience

and commonly accepted rules.

Objective:

This  paper  investigates  the  efficacy  of  applying  Eurocodes’  rules  for  the  design  and  analysis  of  automated  rack  supported

warehouses. Structural performance, construction feasibility and economic effort are considered.

Method:

A typical case study building was designed following the two approaches proposed by Eurocodes: elastic and dissipative.

Results:

The satisfaction of the capacity design requirements, used for dissipative approach, was not always possible. Analyses showed the

development of non-uniform collapse mechanisms and yielding patterns.

Conclusion:

Specific  design  rules  and  analysis  techniques  shall  be  developed  accounting  for  the  structural  performance  of  automated  rack

supported warehouses.
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1. INTRODUCTION: STEEL RACKS AND AUTOMATED SUPPORTED RACK WAREHOUSES

Storage  warehouses  constructions  have  the  main  function  of  storing  goods  after  production  and  before  market

distribution. Different typologies of storage warehouses developed in the past decades; their geometrical and structural

characteristics varied due to producers’ needs and practical experience, without following codified standards or design

methodologies.

A  basic  distinction  exists  between  traditional  Steel  Racks  (SR)  and  Automated  Rack  Supported  Warehouses
(ARSW). SR are designed to carry on the structural self-weight and the weight of the stored goods. ARSW are self-

bearing rack structures devoted to support, besides self-weight and weight of products, environmental loads (i.e. wind,

snow  and  seismic  action)  and  all  the  other  non-structural  elements  such  as  clads,  roof,  technological  facilities,

equipment,  etc.

If  indications  help  the  design  of  SR,  no  provisions  currently  exist  for  ARSW:  designers  follow  companies’

requirements  and  practical  experience,  sometimes supported  by  experimental  evidence.  Plenty  of  researches  were
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conducted during last years concerning SR, but only several works dealt with ARSW, mainly related to logistic aspects

without analysing structural issues.

Storage warehouses, both SR and ARSW, present different plan layouts to optimize the costs due to material storage

and handling, as function of the logistic needs. Boysen et al. [1], De Koster et al. [2] and Cardona et al. [3] deeply

analysed the picking order sequences used in warehouses, highlighting their dependence on typology of goods, market

organization, openings’ distribution, period of the year, etc.

The traditional structural scheme of steel SR consists of a regular sequence of upright frames connected by coupled

pallet beams devoted to carry on the goods, as widely presented by Bernuzzi [4]. The bracing system is forced in the

transversal direction to maximize the storage capacity. Structural elements frequently adopt cold formed profiles with

non-bisymmetric cross-section; this solution optimizes the structural performance by reducing the steel weight and the

costs due to the skeleton frame [5]. Slenderness and buckling aspects, as well as realization of joints and connections,

shall otherwise be accounted for.

In the past, only vertical gravitational loads (self-weight and stored goods) ruled the design of SR. The adopted

safety  levels  towards  vertical  and  horizontal  actions  were  assessed  in  relation  to  producers’  needs,  not  respecting

prescriptions  imposed  for  steel  constructions.  Recent  experimental  and  numerical  investigations  performed  by

Kanyilmaz et al. [6, 7] showed the unexpected seismic performance of SR, characterized by sudden and brittle failures,

especially if compared to ordinary steel constructions. It was shown that several factors handle this situation, which are

the presence of perforations in the thin wall of the uprights,  the typology of connections between elements and the

employment of cold-formed profiles instead of hot-rolled ones [8]. Based on these considerations and on the results of

experimental  campaigns on real  scale prototypes performed in two successful  European projects (Steelrack  [9] and

Steelrack 2 [10]), guidelines and indications for the seismic design of SR developed. Currently, EN16681:2016 [11]

allows the safe and reliable design of traditional pallet steel racks.

If  recent  specific  design  rules  exist  for  SR,  no  prescriptions  raise  about  ARSW.  ARSW  are  complex  steel

constructions provided by sophisticated automated machines for the handling of products. ARSW developed in the last

decade  based  on  the  need  for  bigger  and  optimized  working  spaces,  able  to  increase  the  market,  thanks  to  the

continuous development of the storage technology.

ARSW can be more than 100 m long and 30 m high; the racks, extending to the full height of the building, represent

the  load-bearing  structure.  Racks  present  a  high  number  of  reduced-height  inter-storey  (1.0÷1.30  m)  and  two

consecutive  lanes  of  racks  with  usually  2.0-2.5  m  large  loading-unloading  isles,  where  machines  are  located.

The geometrical characteristics of ARSW and the automated handling of pallets allow the full exploitation of the

available space. Statistical analyses highlighted that the pallets, in fully load conditions, cover about the 54% of the plan

surface and the 40% of the volume. In serviceability condition, not all the shelves are full: the distribution of pallets

depends  on  logistic  strategies,  ruled  by  picking  order  sequences  like  the  ones  adopted  for  SR.  The  products’

organization  affects  the  behaviour  of  ARSW  during  seismic  events,  being  responsible  for  masses’  distribution.

Nowadays, the design of ARSW follows companies’ needs with a practical based-experience approach. This situation

exposed structures to relevant damages in case of seismic events, as highlighted during the last 2012 Emilia-Romagna

earthquake. It was the case, for instance, of Ceramiche Sant’ Agostino storage warehouse [12, 13, 14]. Being ARSW

not  designed  to  support  seismic  action,  total  or  partial  collapses  in  case  of  earthquake  event  are  frequent,  causing

problems  not  only  from  the  life-safety  point  of  view  but  also  considering  financial  aspects.  The  interruption  of

production and activities leads to relevant economic losses and efforts to recover the pre-emergency condition.

The need for safe and reliable design guidelines for ARSW becomes then clear. Since ARSW strongly differ from

SR in terms of loading conditions and geometry, EN16681:2016 [11] cannot be used. One possibility is the application

of Eurocodes 3 and 8 requirements for steel constructions, even if differences exist also in this case: it is enough to

think to the number of storeys with reduced height and to their geometrical configuration. The interest on the topic is

well  evidenced  by  the  financing  of  the  European  research  project  “STEELWAR:  Advanced  structural  solutions  for
automated  STEEL  rack  supported  WARehouses”,  Research  Fund  for  Coal  and  Steel  grant  agreement  N.  754102,

2017-2021.

Stating the above considerations, this paper investigates the efficiency of Eurocodes’ design and analysis rules for

ARSW, in terms of feasibility, structural performance and costs to determine the eventual need of further studies and

applications.
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Advantages  and  disadvantages,  structural  performance  and  feasibility  of  proposed  solutions  are  evaluated  and

deeply discussed.

2. METHODOLOGY

An ARSW case study building was designed following European standards [15, 16]. Loading indications coming

from Italian National Standards for Constructions [14] were considered. Two approaches (elastic – EA and dissipative –
DA) were adopted for the design, highlighting differences in terms of steel weight, seismic performance at Life Safety

(LS) limit state, collapse mechanisms, construction details and other relevant aspects.

The Elastic Approach (EA) pursued the realization of buildings provided by a non-dissipative behaviour according

to Eurocode 3 for steel structures. Structural members should remain in the elastic field without the development of

dissipative mechanisms. Elastic seismic action (unitary behaviour factor) was used.

The Dissipative Approach (DA) pursued the realization of structures following the capacity design approach of

Eurocode 8 [15]. The respect of specific details’ indications for joints and connections and for the determination of

design actions of protected members was mandatory. Elastic response spectrum was reduced by the application of a

behaviour factor higher than 1.0.

Numerical nonlinear models and analyses allowed to investigate the structural performance of ARSW buildings.

Several problems concerning the efficacy of the capacity design approach, when applied to ARSW, were highlighted.

Analyses’  results  showed  the  need  of  a  revised  design  approach  for  ARSW  to  assure  the  desired  structural

performances, adequate safety and easiness during the assembly phase. Fig. (1) summarizes the method adopted in the

manuscript.

Fig. (1). Scheme of the methodology adopted in the paper.

3. DESIGN OF ARSW STRUCTURES

3.1. Selection of the Case Study

The selected case study is a 24.47 m high rectangular plan building (21.5x74.8 m) with X-shaped concentric braces

configuration. The case study is representative of Italian ARSW of the last decades. 10 lines of racks – two on the sides

and the others coupled in the middle – with a total of 19 storeys with a maximum inter-storey height equal to 1.30 m, 17

loading levels and 5 loading-unloading aisles were present. The weight of each pallet weight was 1000 kg, resulting in a

whole global warehouse capacity up to 12.580 pallets. The general organization of the building is presented in Fig. (2).
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Fig. (2). Transversal and longitudinal sections of the ARSW case-study building. A generic distribution of pallet is also presented.

3.1.1. Design Criteria and Assumptions

Profiles with sections belonging to Class types 1, 2 or 3 were adopted [15 - 17]. Profiles with sections of Class 4

were  used  only  for  the  longitudinal  beams  carrying  on  the  pallets.  In  case  of  DA,  other  profiles  replaced  angular

sections to guarantee the correct dissipative behaviour.

To compare the two design strategies, for the same structural elements, the same section profiles were adopted,

modifying  the  thickness  and  the  steel  grade  in  relation  to  the  design  demand  and  the  need  to  satisfy  Eurocodes’

prescriptions.

Table 1. Definition of the design loads.

Dead Load – G1 According to the Steel Profiles Used.

Permanent/non-structural loads G2

Roof panels: 0,20 kN/m
2

Side panels: 0,25 kN/m
2

Accidental loads Qk

Stored goods: each pallet is 1000 kg. The weight of each pallet is reduced by 15% basing on current practice.

Live load on roof: 0.50 kN/m
2

Wind action 1.15 kN/m
2
 for the upwind side 0.69 kN/m

2
 for the downwind side

Snow load: 1.2 kN/m
2

Definition of the Seismic action for

the design (§ 3.2.3 of NTC2008)

Soil of category C.

DL limit state LS limit state (EA) LS limit state (DA)

ag 0.06 g 0.163 g 0.163 g

F 2.507 2.449 2.449

Tc* 0.269 s 0.284 g 0.284 g

q 1.00 1.00 2.00
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The uprights presented rectangular hollow sections (class 1), the beams adopted double channel sections (Class 1)

and for the bracing system, angular (Class 3 – in case of EA) and rectangular hollow sections (Class 1 - in the case of

DA) were selected. C-shaped cold formed profiles were used for the longitudinal beams carrying the pallets.

3.1.2. Design Loads and Combinations

The design loads were defined in relation to the building site (Modena, Italy); Table 1 summarizes adopted actions.

Linear dynamic analyses with response spectra were performed. Behaviour factors (q) were respectively equal to 1.0

and 2.0 for EA and DA. Technical reasons justify q=2.0: for example, the need of achieving Damage Limitation (DL)

actions lower with respect to Life Safety (LS) ones, adoption of medium/low ductility class to simplify connections,

satisfaction  of  Eurocodes’  requirements  etc.  The  pallets’  weight  was  evaluated  referring  to  the  full  load  condition

neglecting the influence of the load distribution. The weight of each pallet was reduced by 15%: this last assumption,

not exactly representative of the current condition of ARSW, maximized the seismic masses.

3.2. Design with Elastic Approach (EA)

The  design  was  executed  performing  a  linear  dynamic  analysis  with  unitary  response  spectrum.  The  structural

scheme adopted (X-braces in tension) neglected the contribution of braces in compression.

The three-dimensional model of the structure was realized using SAP2000
®
 software (Fig. 3). All the steel members

(uprights,  beams,  braces)  were  modelled  as  mono-dimensional  frame  elements.  Connections  were  designed  and

modelled  as  pinned  joints,  except  for  the  column-to-foundation  connection,  fixed  in  both  directions.

Fig. (3). Three-dimensional model for the designed ARSW building: a) global view; b) transversal view; c) longitudinal view.

Structural elements and connections were designed to elastically resist the design actions [16]. The deformability of

the  structure  was  checked  against  DL  limit  state,  keeping  the  maximum  inter-storey  drift  lower  than  the  imposed

limitation.

Three different sections were adopted for vertical braces: L45x45x5, L50x50x5 and L60x60x5, steel grade S355.

Modifications of elements’ section along the whole height of the frame were applied, resulting in several different

construction details (Table 2).

Table 2. Summary of profiles and materials adopted for the different structural elements considering EA and DA.

ARSW Designed with EA - Transversal Frame ARSW Designed with DA - Transversal Frame
Element Section & material Element Section & material

Roof Truss Roof Truss

Struts and ties Double Angular Section 45x45x4 S355 Struts and ties Double Angular Section 45x45x4 S355

Diagonals Double Angular Section 55x55x4 S355 Diagonals Double Angular Section 55x55x4 S355

External Uprights External Uprights

9
th
 level- roof Rectangular Hollow Section 120x80x4 S355 9

th
 – roof levels Rectangular Hollow Section 120x80x4 S355

 a)  b)    c)  
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ARSW Designed with EA - Transversal Frame ARSW Designed with DA - Transversal Frame
5

th
 -8

th
 levels Rectangular Hollow Section 120x80x8 S355 5

th
 - 8

th
 levels Rectangular Hollow Section 120x80x6 S355

1
st
 - 4

th
 levels Rectangular Hollow Section 120x80x10 S355 1

st
 - 4

th
 levels Rectangular Hollow Section 120x80x10 S355

Intermediate Uprights Intermediate Uprights

9
th
 level/roof Rectangular Hollow Section 150x100x6 S355 9

th
 – roof levels Rectangular Hollow Section 150x100x4 S355

5
th
 - 8

th
 levels Rectangular Hollow Section 150x100x8 S355 5

th
 - 8

th
 levels Rectangular Hollow Section 150x100x6 S355

1
st
 - 4

th
 levels Rectangular Hollow Section 150x100x10 S355 1

st
 - 4

th
 levels Rectangular Hollow Section 150x100x10 S355

Beams Beams

All Beams Double Channel Section 80x50x3 S355 All beams Double Channel Section 80x50x3 S355

Bracing elements Bracing elements - External braces

11
th
 level/roof Angular Section 45x45x5 S355 15

th
 – roof levels Angular Section 30x30x4 S235

7
th
 - 10

th
 level Angular Section 50x50x5 S355 11

th
 -14

th
 levels Angular Section 35x35x4 S235

1
st
 - 6

th
 levels Angular Section 60x60x5 S355 10

th
 level Angular Section 35x35x4 S275

4
th
 - 9

th
 levels Angular Section 40x40x4 S275

1
st
 - 3

rd
 levels Angular Section 40x40x5 S355

Internal braces

15
th
 – roof levels Rectangular Hollow Section 30x30x2 S235

12
th
 -14

th
 levels Rectangular Hollow Section 30x30x2.5 S235

7
th
 - 11

th
 levels Rectangular Hollow Section 30x30x2.5 S275

2
nd

 - 6
th
 levels Rectangular Hollow Section 30x30x2.5 S355

1
st
 level Angular Section 40x40x4 S355

Connections were welded in the transversal direction to give continuity among the uprights and to fix the other

elements on them through a supporting steel plate. In the longitudinal direction, the beams bearing the pallets were

bolted to supporting brackets welded to the transversal beams.

3.3. Design with Dissipative Approach (DA)

The  capacity  design  philosophy  was  followed  to  develop  a  global  ductile  collapse  mechanism  through  the

localization of plastic deformations in correspondence of braces in tension. The modelling approach, environmental and

live loads were the same assumed for the EA; seismic action adopted a behaviour factor equal to 2.0.

The contribution of compressed braces was, as well, not considered in agreement to Eurocode 8 [15]. In the case of

X-braces steel structures, the development of plastic hinges in braces shall precede bucking phenomena in compressed

members and the failure of the connections in the dissipative zones. All the other elements (uprights, beams) remain

elastic being over-strengthened respect to braces.

The adoption of cross-section profiles of Classes 1 or 2 for the dissipative elements and the satisfaction of specific

limitations  for  the  non-dimensional  slenderness  ratio  (1.3  ≤λ≤2.0)  are  mandatory  for  DA.  Besides,  the  maximum

allowed  variation  along  the  height  for  the  over-strength  factor  Ω,  defined  as  the  ratio  between  the  tensile  force

resistance (NPl,Rd,i) and the design tensile force (NEd,i) of the i-th dissipative element (Eq. 1), is imposed up to 25% (Eq.

2). This prescription guarantees the development of a global yielding pattern.

(1)

(2)

Due  to  the  reduced  inter-storey  height  and  the  high  number  of  storeys,  the  satisfaction  of  the  capacity  design

requirements was not easy. A wide variation of profiles’ sections and materials allowed to respect the slenderness limits

imposed.  The satisfaction of the Ω restriction was,  otherwise,  not  always possible,  resulting in two non-dissipative

zones in correspondence of the top and of the bottom of the construction.  Table 2  summarizes the profiles and the

corresponding materials adopted for the different structural elements following EA and DA; the identification and the

numbering of levels are defined according to Fig.  (4).  Fig.  (5)  shows the portions of the ARSW where Eurocodes’

prescriptions for dissipative structures are not respected, providing indications concerning the different steel grades

iEd
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adopted. The same typologies of connections (bolted, welded) used for EA-ARSW, were adopted for DA-ARSW. A

wide variety of construction details, resulting in higher difficulties during construction phase and higher construction

costs with respect to the EA solution, was obtained. Table 3 summarizes the profiles and the corresponding materials

adopted for the different structural elements following the DA.

Fig. (4). Numbering of the different levels/storeys and indication of typical components in ARSW.

Fig. (5). Dissipative structure, transversal frame: non-dissipative zones and adopted steel grades.

3.4. Comparison between Elastic and Dissipative Approaches

The comparison between the structural solutions achieved with EA and DA highlight positive and negative aspects,

mainly concerning the total weight of the structures (i.e. material cost) and the typology of joints and connections (i.e.
manpower and construction costs).

The weight of each transversal frame was equal to 10,47 tons and 9,28 tons in the case of, respectively, EA and DA.

The resulting base shear forces acting at LS were respectively equal to 435 kN and 197 kN for EA and DA, because
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of the different design seismic action and, besides, seismic masses of the two buildings.

Since no specific capacity design rules are prescribed for structural details, connections are easier in EA-ARSW if

compared to structural details required for DA-building. Differences in sections and materials resulted in a wide range

of construction details and to the increase of construction costs. Table 3 summarizes the differences between EA and

DA solutions for the design of ARSW structures.

Table 3. Summarizing table of pros and cons of dissipative and non-dissipative approach for ARSW design.

Elastic Approach for design (q=1.0) Dissipative Approach for design (q=2.0)

Pros
Easier prescription to be respected

Lighter structure (9.28 tons)
Easier construction details

Cons
Heavier structure (10,47 tons) Complexity for the variety of construction details

Higher actions and requested resistance Not full satisfaction of capacity design requirements

4. STRUCTURAL ASSESSMENT OF ARWS: RESULTS AND DISCUSSION

Nonlinear  static  analyses  were  carried  out  on  bi-dimensional  plane  frames  representing  the  typical  transversal

section of the case study building. Analyses were performed using SAP2000® in two following steps: in the first step

only braces in tension were considered; the second step also included the contribution of compressed braces, using

opportune modelling techniques. A lumped plasticity approach was adopted for numerical simulations.

4.1. Analysis Including only Braces in Tension

4.1.1. Modelling of Braces in Tension

Plastic hinges were located in braces in tension,  dissipative members in the structural  scheme adopted.  A zero-

compression limit was applied to each brace to neglect its contribution when compressed.

An elastic perfectly plastic behaviour characterized plastic hinges. Fig. (6) shows the adopted force/displacement

relationship;  different  colours  and  symbols  are  associated  to  the  achievement  of  different  Limit  States  (immediate

occupancy – IO, life safety – LS and collapse prevention – CP). The model of the plastic hinge included also the first

yielding  (represented  by  a  magenta  square)  and  a  point  beyond  CP  introduced  to  solve  convergence  problems

(represented  by  a  yellow  crossed  circle).  The  degrading  branch,  needed  by  the  software,  was  not  relevant  for  the

analysis. The acceptance criteria for each limit state are provided by EN1998-3:2005 [18], being Δt the elongation of the

considered element, hereafter summarized.

Fig. (6). Force/displacement diagram adopted for plastic hinges in tense braces.

Limit for Immediate Occupancy - IO (blue circle): 0,25·Δt.

Limit for Life Safety - LS (light blue rhombus): 7,0·Δt.

Limit for Collapse Prevention - CP (green triangle): 9,0·Δt.
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4.1.2. Nonlinear Static Analysis: Results

Pushover analysis adopted two different load distributions: the 1
st
 group is characterized by incremental horizontal

actions  proportional  to  the  shear  forces  at  each  level  of  the  ARSW;  the  2
nd

 group  is  characterized  by  incremental

horizontal forces proportional to the masses.

Analyses were performed in displacement control; positive force is directed from left to right. Results are presented

in terms of capacity curves: the control point was fixed in correspondence of the top storey of the structure.

For each dissipative element, the achievement of the different limit states of Fig. (6) was assessed. In the case of

DA-ARSW, forces acting on non-dissipative members were checked to confirm the efficiency of the capacity design.

Fig. (7) shows the capacity curve obtained for EA-ARSW using the 1
st
 group distribution and the yielding pattern

achieved at collapse limit state. As visible, considering the seismic design base shear (435 kN), the structure was still in

the elastic field. The collapse condition was achieved in correspondence of several braces in the bottom part of the

building for a displacement equal to about 37 cm and base shear equal to 710 kN.

Fig. (7). a) Capacity curve of ARSW designed for q=1.0 for 1
st
 group distribution; b) yielding pattern and achievement of different

limit states in correspondence of the last step of the analysis (about 37 cm of displacement).

Fig. (8) shows the capacity curve obtained for EA-ARSW using the 2
nd

 group distribution and the yielding pattern

achieved at collapse limit state. In this case also, considering the seismic design base shear (435 kN), the structure was

still in the elastic field. The collapse condition was achieved in correspondence of several braces in the bottom part of

the building for a displacement equal to about 35 cm and base shear equal to 745 kN.

Fig. (8). a) Capacity curve of ARSW designed for q=1.0 for 2
nd

 group distribution; b) yielding pattern and achievement of different

limit states in correspondence of the last step of the analysis (about 35 cm of displacement).

 

  a) b)

 a) b)
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Similar considerations are valid in the case of pushover analysis on DA-ARSW. Figs. (9 and 10) highlight, once

again, that for a base shear equal to the design one (about 197 kN) the structure exhibited an elastic behaviour. The

collapse condition – achieved for values of displacements and base shear respectively equal to 34 cm and 333 kN for 1
st

group forces and to 35 cm and 363 kN for 2
nd

 group forces – corresponded to a wider distribution of plastic hinges, in

correspondence of the central bottom part of the building and, in parallel, of the external uprights.

Fig. (9). a) Capacity curve of ARSW designed for q=2.0 for 1
st
 group distribution; b) yielding pattern and achievement of different

limit states in correspondence of the last step of the analysis (about 33 cm of displacement).

Fig. (10). a) Capacity curve of ARSW designed for q=2.0 for 1
st
 group distribution; b) yielding pattern and achievement of different

limit states in correspondence of the last step of the analysis (about 33 cm of displacement).

Comparing EA and DA-ARSW structures, relevant differences in the yielding pattern developed were observed

(Fig. 7 ÷ Fig. 10). In EA-ARSW plastic hinges mainly developed in the central bottom part of the frame; in the case of

DA-ARSW also lateral braces were involved in the developed mechanism.

Table 4 presents the values of base shear and displacement at yielding and collapse; in the table, ELS and CLS are

acronyms used, respectively, to show the elastic and the collapse limit states.

Table 4. Base shear and displacement values corresponding to yielding and collapse for ARSW case study buildings.

Pushover Analyses
EA (q=1.0) 1st Group EA (q=1.0) 2nd Group DA (q=2.0) 1st Group DA (q=2.0) 2nd Group
ELS CLS ELS CLS ELS CLS ELS CLS

Base Force [kN] 635 710 660 745 291 333 290 363

  a) b)

 a) b)
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Pushover Analyses
EA (q=1.0) 1st Group EA (q=1.0) 2nd Group DA (q=2.0) 1st Group DA (q=2.0) 2nd Group
ELS CLS ELS CLS ELS CLS ELS CLS

Displacement [cm] 21 37 19 3 12 34 11 35

Looking  at  Fig.  (11),  for  the  same  displacement  of  about  120  mm  (i.e.  value  indicating  the  end  of  the  elastic

behaviour of the DA-ARSW), the EA structure was in the elastic field, while the first plastic hinges developed in the

lower bracing elements of the dissipative structure. It is otherwise to be noted that for the EA-ARSW, the capacity

curve  beyond  the  elastic  limit  is  provided  by  a  mechanical  relevance  only  if  the  connections  among  elements  are

enough over-resistant respect to the bracings. This condition, currently, is not mandatory for non-dissipative structures

[15 - 17].

Fig. (11). Comparison of the capacity curves obtained from the EA and DA-ARSW: a) 1
st
 distribution of horizontal forces; b) 2

nd

distribution of horizontal forces.

Referring  to  the  yielding  patterns,  the  DA  allowed  a  major  diffusion  of  plastic  hinges:  the  higher  parts  of  the

external lines of racks took part to the mechanism. Although a wider distribution of plastic hinges was reached, a global

collapse mechanism was not achieved.

4.2. Analysis Including Braces in Compression

4.2.1. Modelling of Braces in Compression

Further  analyses  were  performed  including  the  contribution  of  compressed  braced  for  the  DA-ARSW.  An

asymmetric  tension/compression  behaviour  characterized  each  plastic  hinge:  for  the  tensile  force/displacement

relationship,  the  same limitations  presented  for  only-tension  braces  were  adopted.  The  compressive  behaviour  was

calibrated basing on preliminary numerical simulation on single brace elements.

A  simple  fibre  model  was  realized  using  OpenSees
®

 [19]  following  methods  widely  presented  in  the  current

scientific literature [20, 21, 22]. An initial imperfection, equal to 1/500 of the total length of the element, was applied to

model bucking phenomena; a constitutive elastic-perfectly plastic law was adopted for the material. Pushover analysis

were performed to simulate the behaviour of compressed members (Fig. 12); results in terms of displacement/base shear

are presented for two different sections, according to what presented in Badalassi et al [12].

The equivalent quadri-linear force/displacement law was extracted basing on energy equivalence considerations: the

continuous curve was obtained from nonlinear analyses on the fibre compressed element, the dashed one represents the

approximation to use in the model.

 a) b)

��������
����������
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Fig. (12). Determination of the equivalent quadri-linear relationships for: a) angular L35x35x4 profile, length 1640 mm steel grade

S235; b) rectangular hollow section 30x30x2,5, length 1640 mm, steel grade S235.

The quadri-linear force/displacement law is defined as follows:

The first branch (O-1) is a parallel to the almost linear part of the curve till the greatest force is reached.

The second branch (1-2) is the horizontal segment till point 2 is reached (point 2 is the point of the original

curve where the maximum force is reached).

Point 4 is the point of the original curve corresponding to d2=15·d1, being d1 the displacement at point 1.

Point 3 is defined basing on the energy equivalence considerations between the two curves.

Fig. (13) shows the force/displacement relationship adopted for each plastic hinge. The different colours correspond

to the different limit states. The acceptance criteria are provided by EN1998-3:2005 [18], being Δc the shortening of the

considered element.

Fig. (13). Force/displacement law adopted for each plastic hinge.

Limit for IO (blue circle): 0,25·Δc for profiles of class 1 and 2.

Limit for LS (light blue rhombus): 4, 0·Δc for profiles of class 1 and 1,0·Δc for profiles of class 2.

Limit for CP (green triangle): 6,0·Δc for profiles of class 1 and 1,00·Δc for profiles of class 2.

4.2.2. Nonlinear Static Analysis: Results

The lumped plasticity bi-dimensional model of DA-ARSW was developed with SAP2000®; the model included

braces in both tension and compression. Pushover analyses were performed using the same forces distribution described

in the previous paragraph. Fig. (14) shows the capacity curve for the 1
st
 distribution of forces. Points A, B, C and D

refer to the relevant conditions achieved; Table 5 gives values of corresponding base shear and displacement. More in

details:
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Table 5. Relevant points achieved in the analysis with corresponding values of base shear forces and displacements.

1st Distribution Forces – Shear Base Forces 2nd Distribution of Forces – Masses
A B C D A B C D

Base Force [kN] 51 258 354 362 49,5 381 392 384

Displacement [cm] 1,4 8,1 11,6 12,0 1,2 10,8 11,8 15,5

Fig.  (14).  Pushover  analysis  on  DA-ARSW  including  compressed  members  in  the  model:  a)  1
st

 distribution  of  forces;  b)  2
nd

distribution of forces.

Point A corresponds to a base shear of about 51 kN and a displacement of 1.4 cm. In this condition, several

compressed members of the upper part of the external right shelve showed buckling phenomena.

Point B corresponds to a base shear equal to 258 kN and a displacement of 8.1 cm. In this condition, CP limit

state  was  reached  in  several  compressed  braces;  buckling  was  observed  in  most  of  the  braces,  while  tense

members did not show any specific structural problem.

Points C and D correspond to values of shear base of about 360 kN and displacement equal to 12 cm. Most of

compressed braces reached CP limit state; strength resistance was achieved in several braces in tension.

Similar results were observed adopting the 2
nd

 forces group (Fig. 14b). In particular:

Point A corresponds to a base shear force equal to 50 kN and displacement of 1.2 cm. In this condition, several

compressed braces of the upper part of the external right shelve underwent buckling phenomena.

Points B and C correspond to values of the base shear and displacement of about 380 kN and 10-11 cm. CP was

achieved in most of the braces in compression, whilst only few tense braces reached their strength capacity.

Point D corresponds to a displacement of about 15.5 cm. The collapse condition was reached for most of the

tense braces in the bottom part of the ARSW structure.

Fig. (15) shows the distribution of achieved limit states (i.e. yielding pattern) at the end of the analysis (point D) for

the  DA-ARSW  building  and  the  two  distributions  of  forces.  As  visible,  no  global  dissipative  mechanisms  were

achieved:  ultimate  limit  states  were  reached  only  in  correspondence  of  several  elements,  while  most  of  them  still

exhibited  –  at  the  end  of  the  analysis  –  an  elastic  behaviour.  This  situation,  together  with  the  reduced  absolute

displacement (lower than 15 cm), was related to the concentration of deformations in correspondence of the bottom part

of the DA-ARSW. This is visible from Fig. (16a), in terms of both absolute displacement and inter-storey drift. High

values of inter-storey drift (up to 2.3%) were achieved in correspondence of the 4
th
-5

th
 storeys of the middle shelves,

while in the other areas, lower and differently distributed values were observed.
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Fig. (15). Yielding patterns associated to the last step (point D) of analysis on the DA-building adopting: a) 1
st
 and b) 2

nd
 group

distribution of forces.

Several considerations shall be made concerning this situation. One is related to the analysis method: the monitoring

of the roof displacement – as commonly used in pushover analyses – is not fully representative in case of ARSW, where

the shelves are connected only in correspondence of the roof, being otherwise independent along the whole height. This

is evident considering the completely different behaviour of middle and lateral shelves (Fig. 16b).

Besides, the development of dissipative mechanisms takes place mainly in the bottom part of the DA-ARSW, where

the overstrength variation limit is satisfied (Fig. 5): this indicates that Eurocode 8 prescriptions are not able, for this

a)  

b)  
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particular structural typology, to provide the full exploitation of structural ductile performance as required.

Fig. (16). a) Absolute displacements and b) interstorey drifts in correspondence of the different storeys of the ARSW for the middle

and the lateral shelves (2
nd

 group of forces).

CONCLUSION AND FUTURE WORKS

Automated Rack Supported Warehouses (ARSW) differ from traditional pallet racks (SR), being designed to resist

besides self-weight and stored goods, non-structural components and equipment, environmental and seismic actions.

EN 16681:2016 is then not valid for the design and the only possible reference standards are Eurocodes 3 and 8 for steel

structures. But ARSW also differ from steel buildings mainly due to their geometry, e.g. high number of storeys of

reduced height: the efficacy of Eurocodes’ design rules when applied to ARSW shall be then assessed.

To this aim, a case-study building was sized following an elastic and a dissipative approach. The two strategies were

compared in terms of design procedure, construction feasibility, costs and structural performance.

In  the  dissipative  Design  Approach  (DA)  the  satisfaction  of  the  overstrength  variation  limit  along  the  height

imposed by Eurocode 8 was not always possible. This was mainly due to the geometry of ARSW and resulted in two

non-dissipative portions located in correspondence of the bottom and of the top of the DA-ARSW (Fig. 5). The respect

of slenderness limits (1.3 ≤ λ ≤ 2.0) was pursued through a wide variation of sections’ profiles along the height.

If costs related to steel material are lower in the case of EA-ARSW (9.28 tons vs 10.47 tons), connections in DA-

ARSW show higher  variability  and higher  difficulty  of  realization  due  to  capacity  design  requirements,  increasing

construction costs and manpower effort.

Nonlinear  static  pushover  analyses  were  adopted  to  assess  the  structural  performance.  EA  and  DA-ARSW

experienced a  non-uniform collapse  mechanism involving only  the  bottom and middle  parts  of  the  structures,  then

disagreeing  with  the  capacity  design  philosophy  Figs.  (7-10),  Figs.  (14  and  15).  The  application  of  a  monotonic

increasing load in correspondence to the roof storey led to the concentration of deformation/displacement at the 4
th
-5

th

levels, well represented looking at the inter-storey drift distributions obtained (Fig. 16). The global ductile behaviour

imposed by Eurocode 8 is then not achieved. This situation depends, from one side, on the structural building typology

and, on the other side, on the analysis method. Being the shelves connected only at the roof and independent in the

bottom and intermediate portions, the representation of the behaviour by the monitoring of a single point is not strictly

meaningful. To study with more accuracy the problem, nonlinear dynamic analyses with representative accelerograms

shall be developed.

Results highlight then the need to develop specific design rules for ARSW, since the traditional approach proposed

by Eurocodes do not allow to fully exploit the structural performance of such structures. At the same time, the necessity

of  improving  analysis  techniques  to  better  understand  and  exploit  the  behaviour  of  ARSW  becomes  evident.  The
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present manuscript constitutes the base for further investigations and analyses, actually ongoing in the framework of the

European  research  project  “STEELWAR:  Advanced  structural  solutions  for  automated  STEEL  rack  supported
WARehouses”, funded by the Research Fund for Coal and Steel (RFCS), started in 2017 and that will end in July, 2021.

LIST OF ABBREVIATIONS

SR = Traditional Steel Pallet Racks

ARSW = Automated Rack Supported Warehouses

EA = Elastic Design Approach

DA = Dissipative Design Approach

EA-ARSW ARSW = Designed with Elastic Approach

DA-ARSW ARSW = Designed with Dissipative Approach

LS = Life Safety Limit State

IO = Immediate Occupancy Limit State

CP = Collapse Prevention Limit State

ELS = Elastic Limit State

CLS = Collapse Limit State
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