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Abstract:

Objective:

In this paper, an integral equation model is established to predict the time-dependent response of a vertically loaded pile embedded in
a layered Transversely Isotropic Saturated Soil (TISS).

Methods:

Based on the fictitious pile method, the pile-soil system is decomposed into an extended saturated half-space and a fictitious pile. The
extended half-space is treated as a layered TISS, while the fictitious pile is considered as a 1D bar. The pile-soil compatibility is
accomplished by requiring that the axial strain of the fictitious pile be equal to the vertical strain of the extended layered TISS along
the axis of the pile. The second kind Fredholm integral equation of the pile is then derived by using the aforementioned compatibility
condition and the fundamental solution of the layered TISS, which is equivalent to the solution of the layered TISS subjected to a
uniformly-distributed load acting vertically over a circular area with the radius equal to that of the pile. The fundamental solution of
the layered TISS is obtained via the Reflection-Transmission Matrix (RTM) method for the layered TISS. Applying the Laplace
transform to the Fredholm integral equation, and solving the resulting integral equation, the transformed solution is obtained. The
time domain solution of the pile-soil system is retrieved via the inverse Laplace transform.

Results and Conclusion:

Numerical  results  of  this  paper  agree  with  existing  solutions  very  well,  validating  the  proposed  pile-soil  interaction  model.  A
parametric study is carried out to examine the influence of some parameters on the response of the pile-soil system.

Keywords: Pile, Layered Transversely Isotropic Saturated Soil (TISS), Consolidation, Fredholm integral equation, Fictitious pile
method, RTM .

1. INTRODUCTION

Real saturated soils encountered in civil engineering are usually stratified and the properties of different layers may
thus be different.  Further,  although most  saturated soils  are  isotropic  in  the  horizontal  plane,  due to  the  deposition
process, moduli and permeability of the soil in the horizontal direction are usually different from those in the vertical
direction considerably. Thus, it is reasonable to treat the soil as a transversely isotropic saturated medium. As piles are
the most widely used foundation type in the world, it is thus important to investigate the  interaction  between  the  piles
and  the  layered Transversely  Isotropic Saturated Soil (TISS).

So far a number of methods have been presented for the investigation of the pile-soil interaction, which include load
transfer method [1 - 3], finite layer approach [4 - 6], finite element method [7 - 9], boundary element method [10 - 13],
“hybrid” type of approach [14 - 16], the fictitious pile method [17 - 22] and some other simplified analytical approaches
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[23 - 25].

To account for the influence of the pore pressure on the pile-soil interaction, Niumpradit & Karadushi [21] used the
Biot’s theory and the fictitious pile method due to Muki & Sternberg [19, 20] to deal with the interaction between a pile
and  a  saturated  homogeneous  half-space.  However,  they  only  obtained  the  final  and  initial  state  solutions.
Apirathvoraku  &  Karasudhi  [22]  employed  the  same  fictitious  pile  method  to  study  the  response  of  a  single  pile
embedded in a saturated homogeneous half-space and subjected to a lateral force or a moment at the pile top. As noted
above, due to the stratification of the real soil, piles are rarely installed in the ideal homogenous soil. To account for the
stratification of the realistic soil, Senjuntichai [26] studied the time-dependent response of an axially loaded bar in a
multilayered poroelastic half-space by the influence function of the multilayered poroelastic half-space and the Laplace
transform method. Modeling the pile with the finite element method and using the soil’s fundamental solution obtained
via the analytical layer-element method, Ai et al. [9] also provided a time-dependent solution for a pile embedded in a
multilayered saturated soil.

As mentioned above, apart from stratification property, in engineering practice, the soil might exhibit transverse
isotropy property [27, 28]. However, researches about the interaction between the pile and TISS have not been reported
in the literature so far. Existing relevant researches are all concerned with the interaction between the pile and single
phase transversely isotropic soil. For example, by treating the transversely isotropic soil with a combination of the order
reduction approach and the integral transform method, Ai & Yi [13] presented a boundary element method solution for
a single pile embedded in a multilayered transversely isotropic soil. Later, Ai [29] investigated the behavior of piles in a
multilayered transversely isotropic soil subjected to vertical and horizontal loads simultaneously.

The main objective of this paper is to develop a model which can be used to predict the time-dependent behavior of
a vertically loaded pile embedded in a layered TISS. To establish the model, the pile-soil system is decomposed into an
extended saturated half-space and a fictitious pile according to the fictitious pile method first. The extended half-space
is treated as a layered TISS, while the fictitious pile is as a 1D bar. The compatibility between the extended saturated
half-space and the fictitious pile is accomplished by requiring that the vertical strain of the extended layered TISS along
the axis of the pile is equal to the axial strain of the fictitious pile. The second kind Fredholm integral equation of the
pile is then derived by using the aforementioned compatibility condition and the fundamental solution of the layered
TISS. The fundamental solution of the layered TISS is obtained via the reflection-transmission matrix (RTM) method
for the layered TISS. Applying the Laplace transform to the integral equation of the pile,  and solving the resulting
integral  equation,  the  transformed  solution  is  obtained.  The  time  domain  solution  of  the  pile-soil  system  can  be
retrieved  via  the  inverse  Laplace  transform.  Numerical  results  obtained  by  the  proposed  model  are  compared  with
existing results. Then, a parametric study is presented to examine the influence of some soil parameters on the behavior
of the vertically loaded pile in the layered TISS.

2.  GOVERNING  EQUATIONS  AND  THE  FUNDAMENTAL  SOLUTION  FOR  THE  LAYERED
TRANSVERSELY ISOTROPIC SATURATED SOIL

As mentioned  earlier,  to  establish  the  integral  equation  for  the  pile  embedded  in  the  layered  TISS requires  the
corresponding fundamental solution. Therefore, in this section, the governing equations of the TISS will be presented
and the fundamental solution for the layered TISS will be introduced.
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in  which  denotes  the  total
stress, the effective stress, and the pore water pressure vectors, respectively. For the TISS, the constitutive relations for
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In the cylindrical coordinate system, the equilibrium equations of the TISS under the axisymmetric condition are as
follows in Eq. (1)

where σ22, σrr, σθθ are the component of the total normal stress; σ2r is the total shear stress component. For the saturated
soil, the effective stress principle can be represented as follows (Eq. 2):

the effective stresses have the following expressions (Eq. 3):
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(3)

(4)

where Eh,  Ev  and µv  are the horizontal  elastic  modulus,  the vertical  elastic  modulus and the vertical  direction shear
modulus of the soil, respectively; vh is the Poisson's ratio of the soil in the horizontal direction; vhv is the Poisson's ratio
describing  the  horizontal  strain  caused by the  vertical  stress;  vvh  is  the  Poisson's  ratio  describing  the  vertical  strain
caused by horizontal stress and η is the ratio of the horizontal elastic modulus to the vertical elastic modulus of the soil.

As  noted  above,  to  establish  the  integral  equation  for  the  vertically  loaded  pile  embedded  in  the  layered  TISS
requires the fundamental solution for the layered TISS. The fundamental solution corresponds to the response of the
layered TISS subjected to a unit vertical load uniformly distributed over a circular area in the extended layered TISS.
The circular area is equivalent to the cross-section area of the pile. The layered TISS will undergo an axisymmetric
consolidation  when  subjected  to  the  circular  uniform distributed  load.  With  the  RTM method,  the  aforementioned
fundamental solution of the layered TISS can be obtained. Note that the fundamental solution is first obtained in the
transformed domain with the use of the Hankel-Laplace transform. By means of the inverse Hankel-Laplace transform,
the fundamental solution in the spatial and temporal domain can be retrieved. More details on deriving the fundamental
solution for the layered TISS via the RTM method can be found in [30].

3. FREDHOLM INTEGRAL EQUATION FOR THE PILE EMBEDDED IN A LAYERED TISS

In this section, based on the fundamental solution introduced in the previous section together with the fictitious pile
method due to Muki & Sternberg [19, 20], the second kind of Fredholm integral equations for the pile embedded in the
layered TISS will be derived. As noted above, the fundamental solution is obtained via the RTM method [30].

3.1. Establishment of the Fredholm Integral Equation for the Pile

In this section, the pile subjected to a static vertical load embedded in a two-layered TISS is used as an example to
show the procedure to establish the integral equation for the pile (Fig. 1). The integral equation for the pile embedded in
the layered TISS with arbitrary layers  can also be established by following the same procedure.  Following Muki’s
fictitious pile method, the pile-soil system is decomposed into an extended layered half-space TISS and a fictitious pile
as shown in Fig. (1). As noted above, the extended layered TISS is treated as a three-dimensional continuum medium,
while  the  fictitious  pile  is  as  a  one-dimensional  bar.  The  radius  and length  of  the  pile  are  assumed to  be  R  and  L,
respectively. According to the fictitious pile method, the Young’s modulus of the fictitious pile can be obtained by

(5)

where Ep*1 and Ep*2 are the Young’s moduli of the segments of the fictitious pile corresponding to the segments of the
real pile embedded in the first and second layers, respectively; Ep is the elastic modulus of the real pile; Ev1 and Ev2 the
vertical Young’s moduli of the first and second soil layers, respectively.

As shown in Fig. (1), it is assumed that the pile is subjected to an external load at the top. The axial force of the
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where ur and uz are the displacement components in r and z directions, respectively. The parameters c11 - c44 in equation

subtracting the elastic modulus of the soil from the elastic modulus of the real pile, namely (Eq. 5)

318   The Open Civil Engineering Journal, 2018, Volume 12 Fabrice et al.

(3) denote the elastic constants of the TISS and they can be expressed as follows (Eq. 4):



(6)

According to the aforementioned Muki’s fictitious pile method, to accomplish the compatibility between the pile
and soil, the axial strain of the fictitious pile is assumed to be equal to the vertical strain of the extended layered TISS

(7)

in which  represents the vertical strain of the extended TISS half-space at the center of the cross-section

 at the time t and  represents the axial strain of the fictitious pile at the coordinate z and the time t. The

(8)

in which A represents the cross-section area of the pile.

In this study, for generality, the external load acting at the pile top is assumed to be time dependent. Also, during the
consolidation process, the axial force of the fictitious pile and the vertical distributed load along the fictitious pile are
time dependent. Hence, the external load, the axial force and the vertical distributed load acting on the fictitious pile can
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Fig. (1). Schematics of (a) the extended saturated half-space and (b) the fictitious pile extracted from the pile-soil system.

along the z axis, namely (Eq. 7)

axial strain of the fictitious pile at the coordinate z is as follows (Eq. 8):

be represented by (Eq. 9):
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fictitious pile at time is N* (t,z); the vertical distributed load along the fictitious pile at time is qz(t, z); and the top and
bottom of the fictitious pile are subjected to the forces N* (t, L) and at time, t, respectively (Eq. 6). The layered TISS is
subjected to the reaction force qz (t, z) from the fictitious pile which is distributed over  uniformly, where 
denotes  the  circular  area  corresponding  to  the  cross-section  area  of  the  pile  with  the  vertical  coordinate  z  and

 as well as N* (t, L) distributed over  and  uniformly, respectively. According to the
equilibrium condition for the fictitious pile, the vertical distributed load along the fictitious pile and the axial force of
the fictitious pile at time t have the following relation:

( )z� ( )z�

( ) ( ,0)Q t N t�� (0)� ( )L�



(9)

where the variable with a dot denotes the corresponding time derivative of the variable. Further, for the convenience of

(10)

in which f (t) and g (t) are two arbitrary functions.

In view of the forces acting in the extended layered TISS, and with the fundamental solution for the layered TISS,
the vertical strain of the extended layered TISS at the center of 

(11)

in which N*  (t,  0) and N*  (t,L) represents the reaction forces acting in the layered TISS corresponding to the forces
acting at the top and bottom of the fictitious pile at time t;  is the fundamental solution of the vertical
strain for the layered TISS, which denotes the vertical strain at time t and at the center of  caused by the unit
uniformly-distributed load acting over  from time zero.

(12)

where z+ and z- represent the vertical coordinates approachingz from the down and upper sides infinitely. The difference

 of  the  fundamental  solution  strain  of  the  layered  TISS  in  equation  (12)  can  be

(13)

Applying the above-mentioned pile-soil compatibility condition given by equation (7) and using equations (8) and
(12), one has the following second kind Fredholm integral equation for the pile:
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the subsequent presentation, the convolution between two arbitrary functions is defined as follows (Eq. 10):

 can be expressed as follows (Eq. 11):

Using equation (6) and integrating equation (11) by parts, equation (11) can be rewritten as follows (Eq. 12):

represented as follows (Eq. 13):
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(14)

(15)

where the variable with a  tilde denotes the variable in the Laplace transformed domain;  s  is  the Laplace transform
parameter; and α is a parameter associated with the Laplace transform. Taking Laplace transform on equation (14) with

(16)

in which the variable with a tilde denotes the variable in the Laplace transformed domain.

The axial force of the real pile can be obtained by adding the axial force of the fictitious pile to the force acting on

(17)

where   is  the  time-dependent  fundamental  solution  representing  the  force  acting  on   at  time  t
caused by a unit uniformly-distributed load acting over  from time zero with the compressive force considered to
be positive. The force  can also be obtained by the fundamental solution given in [30]. The appearance of
the negative sign before the brace is because the sign convention for the normal stress of the soil and that of the pile are
opposite.

Similarly, applying the integration by parts and the Laplace transform to equation (17), one has the following axial
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regard to time t, the second kind Fredholm integral equation of the pile is reduced to (Eq. 16):

. Likewise, it can be represented as follows (Eq. 17):

force for the real pile in the transformed domain (Eq. 18):

To eliminate the time derivatives and convolutions in equation (Eq. 14), the Laplace transform should be invoked.
The Laplace transform and the corresponding inverse transform are defined as follows [31], (Eq. 15)
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(19)

where   is  the  transformed  vertical  displacement  of  the  pile;   is  the  transformed
fundamental solution denoting the vertical displacement at the center  of caused by the unit uniformly-distributed
load acting on .

The transformed pore pressure in the layered TISS along the side of the pile can also be obtained by means of the
axial force of the fictitious pile and the corresponding fundamental solution of the pore pressure of the layered TISS as

(20)

in  which   denotes  the  pore  pressure  of  the  TISS  along  the  side  of  the  pile;   is  the
fundamental solution associated with the transformed pore pressure of the layered TISS at the periphery of  due
to the unit uniformly-distributed load acting over .

3.2. Numerical Solution of the Second Kind of Fredholm Integral Equation of the Pile

In this study, the technique used by Niumpradit & Karadushi in [21] to solve the Fredholm integral equation of the
pile is employed. According to Niumpradit & Karadushi [21], the integral along the pile embedded in the ith soil layer
is divided evenly into  number of segments with two end nodes delimiting each segment, in which
NL is the number of the soil layers in contact with the pile. Hence, the total segments used to discretize the pile is equal

to
 . Due to the presence of interfaces between soil layers and the discontinuity of the axial force of the

fictitious pile at the interface, two nodes belonging to different segments of the pile and coinciding at a soil interface
should be treated as two different nodes. Hence, the total number of nodes is equal to Np = Nd + NL.

Adopting the method proposed in [21], the integral in equation (16) over the segment of the pile with the end nodes
zj and zj+1 is evaluated as follows:
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Applying the above equation (21) to Fredholm integral equation (16), the following system of Np linear equations can be
obtained
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be obtained as follows (Eq. 19):

follows (Eq. 20):
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By solving equation (22), Np discrete axial force of the fictitious pile can be obtained numerically. As mentioned
above, once the axial forces for the fictitious pile is obtained, the axial force of the pile, the vertical displacement and
the pile-side pore pressure of the layered TISS can all be determined numerically using corresponding equations.

Note that the obtained solution for the pile is in the Laplace transformed domain. In order to retrieve the solution in
the time domain, the inversion of the Laplace transform has to be performed numerically. In this study, the inversion of
the Laplace transform is accomplished by using the Schapery’s method [32]. According to the Schapery’s method, the
function in the time domain can be retrieved by the corresponding function in the Laplace transformed domain via the

(23)

where f(t) and  represent the function in the time domain and Laplace transformed domain, respectively.

4. NUMERICAL RESULTS AND CORRESPONDING ANALYSES

In this section, numerical results for the response of a vertically loaded pile embedded in a layered TISS obtained by
the proposed model are presented. First, to validate the proposed model, results of this paper are compared with those of
two existing solutions. Then, a parametric study on the effect of different parameters on the behavior of the pile in a
layered TISS is conducted.

(24)

in which, LR, µR and kR are referred to as the reference length, reference shear modulus and reference permeability; the
quantities z*, r*, t*, u*, N*, p* and Q* represent the dimensionless depth, radius, time, displacement, axial force of the pile,
pore pressure, and the applied load, respectively.

4.1. Validation of the Proposed Model

4.1.1. Convergence Test of the Proposed Model

Table 1. Parameters for the soil used in the example of Section 4.1.1.

Layer Number h/m Ev/Pa µv/Pa kv,kη/m.s-1 vh vhv γw/N.m-3

1 8 2.6×107 1.0×107 1.2×10-7 0.3 0.3 9.8×103

2 8 2.6×107 1.0×107 1.2×10-7 0.3 0.3 9.8×103

3 - 5.2×107 2.0×107 1.2×10-7 0.3 0.3 9.8×103
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In  this  section,  three  different  discretization schemes corresponding to  three  total  numbers  of  the  discretization
segments of the pile, namely, Nd = 25, 50, and 53, are used to examine the stability and convergence of the proposed
numerical model. For all three schemes, the stiffness ratio η = 0.5 is used for a stratified soil consisting of two overlying
soil layers and one underlying half-space layer with the shear moduli ratio µv1: µv2: µv3 = 1:1:2. The values of the soil
parameters are tabulated in Table 1 and the pile parameters are as follows: length L = 20m, radius R = 0.25m, and the
Young’s modulus Ep = 2.6 × 109Pa. The solutions for the times of 1 day and 30 days (s) are considered in this example.
The  thickness,  shear  modulus  µv  and  coefficient  of  vertical  permeability  kv  of  the  first  soil  layer  are  chosen  as  the
reference length LR, reference shear modulus µR, and reference coefficient of permeability kR, respectively. As shown in
Figs. (2 and 3), the non-dimensional pile axial force N* and vertical displacement u* of the pile become convergent
when Nd = 50-53. Therefore, in all numerical examples in this study, the total number of segments Nd = 50 is used.

following formula (Eq. 23):

For convenience of presentation, the following non-dimensional quantities are defined (Eq. 24)
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2
 
(a)

 

 
2 (b) 

Fig. (2). Variation of the non-dimensional pile axial force N* along the depth for different number of segments Nd at the times of: (a)
1 Day; and (b) 30 Days.
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3 (a) 

 

3 (b) 

Fig. (3). Variation of the non-dimensional pile vertical displacement u* along the depth for different number of segments Nd at the
times of (a) 1 Day; and (b) 30 Days.
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4.1.2. Comparison with Existing Solutions

Niumpradit & Karasudhi [21] obtained the final solution for the axial force of the axially loaded pile embedded in
the isotropic poroelastic half-space. To compare our results with the final solution of [21], the time is assigned a large
value and the relevant parameters are set as: the pile length-diameter ratio L/d = 20; the soil Poisson’s ratio vh = vhv = vvh

= 0.25 and, η = Eh / Ev = 1 where Eh and Ev are the soil’s horizontal and vertical Young’s moduli. As depicted in Fig.
(4), the pile axial forces corresponding to the above parameters and different pile-soil Young’s modulus ratio (Ep / Ev)
obtained  by  the  proposed  model  in  this  study  agree  with  those  obtained  by  Niumpradit  &  Karasudhi  [21],  thus,
validating the proposed model.

 4 (a) 

 4 (b) 

Fig. 4 contd.....
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Ai et al. [9] investigated the influence of the stratification of the soil on the response of the pile at different times.
Two different cases, namely, Case 1 corresponding to a single layer half-space and Case 2 a stratified soil consisting of
three isotropic layers with the shear moduli ratio equal to µv1 : µv2: µv3 = 1:2:3 are considered in their research, wherein
the subscripts 1, 2 and 3 represent the first layer, second layer and third layer, respectively. Other parameters for the
pile-soil system are as follows: The pile length-diameter ratio L / d = 20; the soil Poisson’s ratio; h = hv = 0.3; the pile-
soil  Young’s  modulus  ratio;  Ep  /  Es  =  300;  the  coefficient  of  permeability  kh  =  kv  =  1.2  10-6  ms-1;  the  soil  layer’s
thicknesses for the second case are h1 / d = h2 / d = 10 ; the soil stiffness ratio is η = Eh / Ev. In this example, the non-

dimensional vertical displacement and time are defined as  and,  in which
the reference ER, µR, and kR are taken as the vertical Young’s modulus, shear modulus and coefficient of the vertical
permeability of the first layer, respectively; R  is the radius of the pile and γw  = 9.8 103Nm-3.  Figs. (4b,  and c) show
clearly that the pile axial force and the dimensionless vertical displacement obtained by the proposed model agree with
those  obtained  by  Ai  et  al.  [9]  for  a  vertically  loaded pile  in  a  multilayered  saturated  soil  perfectly,  validating  the
proposed model again.

4.2. Numerical Results for a Pile Embedded in a Layered TISS

In this section, different examples are used to investigate the influence of several soil parameters on the response of
the vertically loaded pile in the layered TISS. For all examples in this section, the layered half-space TISS consists of
two overlying layers and one underlying half-space. Also, as mentioned above, when conducting numerical simulations,
the pile is divided into 50 equal segments in all examples.

4.2.1. Influence of the Soil Stiffness Ratio and the Stiffness of the Middle Layer

In this section, the influence of the moduli of the middle layer and the stiffness ratio η= Eh / Ev on the response of a
vertically loaded pile embedded in the three-layered half-space TISS is examined. Two different stiffness ratios η = 1.5
and η = 2 are used to show the influence of the horizontal Young’s moduli. For each stiffness ratio η, three cases with
each corresponding to a specific middle layer with different modulus are considered: Case 1 corresponds to a three-
layered  TISS  with  a  harder  middle  layer;  Case  2  a  three-layered  TISS  with  a  softer  middle  layer;  and  Case  3  a
homogeneous half-space TISS. The values of soil parameters for both η = 1.5 and η = 2 are presented in Table 2. The
parameters for the pile are as follows: length L = 20 m, radius R = 0.3m and the Young’s modulus Ep = 2.5 × 109Pa. In

* ( ) /Ru u z AE QR= * 22 /R R wt k t Rµ γ=

 4 (c) 

Fig. (4). Comparison of the results of this paper with those from [21] and [9]: (a) the comparison of the axial force of the pile with
that of Niumpradit & Karasudhi [21]; (b) the comparison of the axial force of the pile with that of Ai et al., [9]; (c) the comparison of
the non-dimensional vertical displacement of the pile with that of Ai et al., [9].
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this section, the thickness, shear modulus µv and coefficient of vertical permeability of the first soil layer are used as the
reference length LR, reference shear modulus µR, and reference coefficient of permeability kR, respectively.

Table 2. Parameters for the soil used in the example of Section 4.2.1.

Layer
Number h/m

Case 1 Case 2 Case 3 kv, kn/m
-1 vn vhv γw/N.m-3

Ev/Pa µv/Pa Ev/Pa µv / Pa Ev / Pa µv / Pa

1 10 2.5×107 1.0×107 2.5×107 1.0×107 2.5×107 1.0×107 1.2×10-7 0.25 0.25 9.8×103

2 10 5.0×107 2.0×107 1.25×107 0.5×107 2.5×107 1.0×107 1.2×10-7 0.25 0.25 9.8×103

3 - 2.5×107 1.0×107 2.5×107 1.0×107 2.5×107 1.0×107 1.2×10-7 0.25 0.25 9.8×103

Fig. (5) shows that for all cases, the axial force of the pile decreases with the increase of the depth. In addition, both
the stiffness ratio and the Young’s modulus of the middle layer have a little influence on the axial force of the pile.
However, at some depth near the soil interface, the axial force of Case 3 is smaller than those of the other two cases.
Similarly, Figs. (6a, b) shows that the vertical displacement of the pile also decreases as the depth increases. It is also
shown in Fig. (6) that for both Cases 1 and 2, a larger stiffness ratio corresponds to a larger vertical displacement. The
vertical displacement increases with time in the harder middle layer case, and it decreases with time in the softer middle
layer case. As depicted in Fig. (7a), the pore pressure on the pile-side tends to zero as the time increases. For all three
cases, the pore pressure at the top of the pile vanishes, since the top of the half-space soil is assumed to be permeable.
For both Cases 1 and 3, the pore pressure first increases and at one depth it reaches a marked peak and then it decreases.
For both the hard and soft  middle layer cases (Cases 1 and 2),  the pore pressure increases with the increase of  the
stiffness ratio, while for the case of homogeneous half-space (case 3), there exists an intersection point in the second
layer. Before this point, the pore pressure increases with the increase of the stiffness ratio; after the point, opposite
scenario occurs. Meanwhile, it follows from the figure that in the second layer of the half-space, the pore pressure of
Case 2 is the largest among the three.

 

 5 (a) 

Fig. 5 contd.....
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5 (b) 

5 (c) 

Fig. (5). Variation of the non-dimensional pile axial force N* along the depth of the pile at the times of 1 Day and 30 Days when
considering the influence of the soil stiffness ratio and the stiffness of the middle layer: (a) N* for Case 1; (b) N* for Case 2; (c) N*
for Case 3.
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6 (a) 

6 (b) 

Fig. 6 contd.....

330   The Open Civil Engineering Journal, 2018, Volume 12 Fabrice et al.



 

6 (c) 

 

7 (a) 

Fig. 7 contd.....

Fig. (6). Variation of the non-dimensional pile vertical displacement u* along the depth of the pile at the times of 1 Day and 30 Days
when considering the influence of the soil stiffness ratio and the stiffness of the middle layer: (a) u* for Case 1; (b) u* for Case 2; (c)
u* for Case 3.
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7 (b) 

7 (c) 

Fig. (7). Variation of the non-dimensional pore pressure p* at the pile side along the depth at the times of 1 Day and 30 Days when
considering the influence of the soil stiffness ratio and the stiffness of the middle layer: (a) p* for Case 1; (b) p* for Case 2; (c) p*
for Case 3.
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4.2.2. Effect of the Permeability of the Middle Layer

In this section, the influence of the permeability on the behavior of the pile embedded in a three-layered half-space
TISS  is  investigated.  The  half-space  TISS  in  this  section  is  also  composed  of  by  two  overlying  layers  and  one
underlying layer, i.e., the underlying half-space. Three cases are considered in this section. For Case1, all three layers
have equal permeability; Case2 corresponds to a high permeable middle layer; Case 3 to a less permeable middle layer.
The parameters for the pile in this section are as follows: length L = 20m, radius  R = 0.3 m and the Young’s modulus
Ep = 2.5 × 109Pa, while the parameters for the soil are shown in Table 3. Similarly, the thickness, shear modulus µv and
coefficient of vertical permeability of the first soil layer are set as the reference length LR, reference shear modulus,
µRand reference coefficient of permeability kR, respectively.

Table 3. Parameters for the soil used in the examples of Section 4.2.2.

Layer
Number h/m

kv, kh/m
-1 vn vhv γw/N.m-3 Eh/Pa

Ev/Pa µv/Pa
Case 1 Case 2 Case 3

1 10 1.0×10-8 1.0×10-8 1.0×10-8 0.25 0.25 9.8×103 2.5×107 2.5×107 1.0×107

2 10 1.0×10-8 1.0×10-7 1.0×10-9 0.25 0.25 9.8×103 2.5×107 2.5×107 1.0×107

3 - 1.0×10-8 1.0×10-8 1.0×10-8 0.25 0.25 9.8×103 2.5×107 2.5×107 1.0×107

Figs. (8 and 9) show that the influence of the permeability of the middle layer is almost negligible. Also, it can be
seen that for all three cases, the vertical displacement increases as time increases. Moreover, both the axial force and
vertical displacement decrease with the depth. Besides, as illustrated in Fig. (10), the permeability of the middle layer
has a significant influence on the pore pressure. The pore pressure is the largest when the half-space’s middle layer is
less permeable, i.e., Case 3, and smallest when the middle layer is highly permeable. The pore pressure at 30 days is
much smaller than that at one day, which indicates that the pore pressure will dissipate with time for all three cases. Fig.
(10a) shows that at the time of one day, the variation of the pore pressure for the three cases are similar: it first increases
with the depth; then, it achieves a peak value at certain depth in the first layer; lastly, it will decrease with the depth.

Fig. 8 contd.....

8 (a) 
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8 (b) 

8 (c) 

Fig.  (8).  Variation  of  the  non-dimensional  axial  force  N* of  the  pile  along  the  depth  at  the  times  of  1  Day and  30  Days  when
considering the influence of the permeability of the middle layer: (a) N* for Case 1; (b) N* for Case 2; (c) N* for Case 3.
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9 (a) 

9 (b) 

Fig. 9 contd.....
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9 (c) 

10 (a) 

Fig. 10 contd.....

Fig. (9). Variation of the non-dimensional vertical displacement u* of the pile along the depth at the times of 1 Day and 30 Days
when considering the influence of the permeability of the middle layer: (a) u* for Case 1; (b) u* for Case 2; (c) u* for Case 3.
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CONCLUSION

The integral equation model for a vertically loaded pile embedded in a layered TISS is established in this study. The
corresponding  fundamental  solution  for  the  half-space  TISS  is  obtained  via  the  RTM  method.  Numerical  results
obtained by the proposed model are compared with those of existing solutions and a good agreement between the two
solutions is observed. The parametric study presented in this paper shows that the transverse isotropy property of the
soil has a considerable influence on the behavior of the pile embedded in the layered half-space TISS. A larger stiffness
ratio will lead to an increase of both the vertical displacement and the pore pressure for a three-layered half-space with a
hard and a soft middle layer. Besides, it is also found that both the vertical displacement and the axial force of the pile
decrease as the depth increases. Also, for a three-layered half-space TISS, the vertical displacement increases with time
for the harder middle layer case,  and it  decreases with time for the softer middle layer case.  As expected,  the pore
pressure along the pile-side tends to zero as the time increases. The permeability of the middle layer of the three-layered
half-space TISS soil has a considerable influence on the pore pressure along the pile-side. The pore pressure is the
largest for the case of the less permeable middle layer, while it is the smallest for the case of the most permeable middle
layer. Besides, due to the permeable assumption for the soil surface, the pore pressure tends to zero at the top of the
pile.

The proposed model provides a valuable tool for estimation of the response of a single pile embedded in a layered
half-space TISS. In the further study, more engineering problems, such as the problem of the pile embedded in the
layered TISS subjected to horizontal  forces and the problem of pile  groups in the layered TISS can be considered.
However,  since the proposed model  in this  study is  for  the TISS with linear  constitutive relation undergoing small
deformation, the proposed model is hence inapplicable to the cases involving non-linear constitutive relations and large
deformations.
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10 (b) 

Fig. (10). Variation of the non-dimensional pore pressure p* at the pile side along the depth at the times of 1 Day and 30 Days when
considering the influence of the permeability of the middle layer: (a) p* for Case 1; (b) p* for Case 2; (c) p* for Case 3.
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