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Abstract:

Introduction:

Natural bending frequencies of externally prestressed steel beam have certain sensitivity to prestress force, so they can be used to
find the magnitude of prestress force.

Methods:

To answer the question if the existence of externally prestressed tendons increases or decreases the natural bending frequencies of a
simply supported steel beam, the calculating formula for natural frequencies is deduced by using the energy method from the view
point  of  prestress  mechanism  and  further  verified  by  the  finite  element  method.  Using  this  formula  of  universal  property,  the
influence of prestress force, eccentricity and cross-sectional area of tendons on natural bending frequencies of prestressed steel beam
is clearly revealed.

Results and Conclusion:

For external prestressed steel beams with straight tendons, their natural frequencies increase with the eccentricity and cross-sectional
area of the prestressed tendon, and the eccentricity has a much larger effect on natural frequencies than the cross-sectional area does.
The prestress force has no influence on the oven-order frequencies but decreases the odd-order frequencies. With the increasing order
number, the prestress effect is much weaker than the effects caused by the eccentricity and cross-sectional area of the tendon.

Keywords:  Prestressed  steel  beam,  Prestressed  tendon,  Natural  frequency,  Finite  element  method,  Prestress  force,  Bending
frequencies.

1. INTRODUCTION

External prestressing technology cannot only reduce the section size of components, thus reduce steel consumption,
but  also  can  improve  structural  bearing  capacity.  Therefore,  compared  with  ordinary  steel  beams,  prestressed  steel
beams  have  been  widely  applied  for  a  better  economic  benefit.  However,  some  dynamic  problems  need  to  be
investigated further. Prediction of the change in natural vibration frequencies with varying magnitude of prestress force
for externally prestressed steel beams (EPSBs) is the one of particular importance, especially when prestressed steel
beams are subjected to dynamic excitation, such as earthquake and wind [1]. Moreover, for an existed EPSB, it is hard
to gauge its prestress force and therefore to acquire its stress and deformation. However, it  is an alternative way to
gauge its natural frequency only if the relationship between the natural frequency and the prestress force has already
been known [2, 3]. The natural  frequency of  an in-service  EPSB will  change when the  prestress force  changes over
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time. It is of great importance in this change over time for structural engineers to ensure safety and serviceability of
EPSBs.

The effect of prestress force on the dynamic response of pre- and post- tensioned beams is a widely debated topic.
Some  argue  that  the  natural  bending  frequencies  (NBFs)  of  prestressed  steel  beams  tend  to  be  decreased  as  the
magnitude  of  the  prestressing  force  is  increased.  This  is  called  the  “compression-softening”  effect  which  can  be
explained by the traditional Euler-Bernouli beam theory [4 - 7]. Others [8, 9] suggest that NBFs of prestressed steel
beams would not be affected by the prestress force. This argument has been pushed forward by Hamed and Frostig [10],
who developed a nonlinear kinematic model and concluded that the final equation of motion for the vibration beam
system was independent of the prestress force. Fang [11] investigated the second order effect of the external prestress
force on the NBFs of a simply supported beam based on the energy method and concluded that external tendons almost
did not influence the other frequencies except the first-order frequency. For externally prestressed beams, it is found to
be the case in numerous experimental studies conducted that their NBFs tend to be increased as the magnitude of the
prestress  force  [12,  13].  Nevertheless,  no  mathematical  model  in  predicting  this  experimental  phenomenon  is
formulated  despite  some  attempts  [14  -  16].

In this study, the calculating formula for natural frequencies of simply supported EPSBs with straight tendons is
deduced by using the energy method from the view point of prestress mechanism and verified by the finite element
method. The influence of the prestress force, eccentricity and cross-sectional area of tendons on NBFs of prestressed
steel beam is revealed.

2. TRADITIONAL THEORETICAL ANALYSIS MODEL AND ITS CORRECTION

The traditional vibration theory takes the prestressed tendons as a pair of constant axial compressive force F at each
beam end, as shown in Fig. (1).

Fig. (1). Free bending vibration of a simply supported beam under the axial compressive force.

According to the plane-section assumption and neglecting the effects of shear deformation and rotary inertia, the
governing  partial  differential  equation  of  simply  supported  beam  under  axial  compressive  forces  for  free  bending
vibration is

(1)

where E,  I,  y(x,  t)  and  are  the elastic modulus, the moment of inertia, deflection of vibration and mass per unit
length of the beam, respectively.

The NBFs of the beam are

(2)

where the mode number i = 1, 2, 3, …, and l is the length of the beam; the i-th order bending frequency of the beam
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without axial compression is denoted as ω 0i and the critical Euler force 

Equation (2) reveals that the existence of prestress force decreases NBFs of the simply supported beam. However,
the experimental phenomenon is contrary to it because the tendon is ignored. Some scholars revised the value of EI in
Equation (1) by using experimental data [12]. Although the revised formulas are not exactly the same, they all can be
expressed as follows:

(3)

where (EI)e,  α  and EI  0  are the revised stiffness of the beam, the modified stiffness factor and stiffness of the beam
before revised, respectively. The modified stiffness factor α can be obtained by fitting experimental data, and is still
empirical without complete theoretical support, and therefore of no universal applicability.

3. NATURAL FREQUENCY FORMULA OF AN EPSB BASED ON PRESTRESS MECHANISM

3.1. Prestress Mechanism

The mechanism of external prestress systems can be summarized as follows: (1) the prestress causes stress and
deformation in the structure and affects its stiffness. (2) The prestressed members, such as tendons, cables and bars,
provide additional stiffness for the whole structure as a part of it. There are two ways for them to do so: (a) the axial
stiffness of the prestressed member exists itself and is independent of the prestress force; (b) the second-order effect of
the axial force imposed by the prestressed members provides stiffness for the structure when the prestressed members
generate deformation perpendicular to its axis, which is common in the point-supported curtain walls and the chord-
supported structures.

3.2. Natural Frequency Formula for EPSBs with Straight Tendons

Based on three sorts of prestress mechanisms above, the formula for NBFs of an EPSB with straight tendons is
deduced by using the energy method. The hypotheses adopted here are consistent with the traditional Euler-Bernoulli
bending  beam theory.  Further,  the  following  three  hypotheses  are  added:  (1)  the  i-th  order  vibration  mode  can  be
expressed as yi = Aisin(iπx / l)sin(ωi t + φi), i = 1,2,3,....., where Ai, ωi and φi are the amplitude, circle frequency and
phase angle of the i-th order vibration, respectively; (2) the change of axial force in the tendons is neglected; (3) the
axial deformation of the beam imposed by the tendons is also neglected.

In the straight tendon layout, which is one of the simplest tendon layouts, the prestressed tendon is anchored at both
ends  of  the  beam,  and  the  rest  of  the  tendon  has  no  contact  with  the  beam,  as  shown  in  Fig.  (2),  where  e  is  the
eccentricity of the prestress force F.

Fig. (2). Model of prestressed simply supported steel beam with straight tendons.

Considering no damping in the process of free vibration of the beam, there is no energy loss. Therefore, the kinetic
energy of the beam is always equal to its potential energy. By using modal decomposition, it can be found that for the i-
th order vibration,

(4)

The potential energy is assumed zero when the beam body is horizontal, and at this position, the kinetic energy of
the beam, only considering the beam body, reaches its maximum value Tmaxi. The kinetic energy of the tendons is very
small and can be neglected for slight vibration.
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The maximum kinetic energy of the prestressed beam of the i-th order vibration is

(5)

where  is the unit beam length mass and  is the vibration speed.

When  reaches its maximum value, Tmaxi is

(6)

When the deflection of the beam body is equal to its amplitude, its potential energy reach its maximum value. At
this time, the maximum potential energy can be divided into two parts by the prestress mechanism mentioned.

First, according to mechanism 2(a), the stiffness of the tendons, independent of the magnitude of prestress force, is
part  of  the  stiffness  of  the  whole  structure.  For  convenience,  in  small  range  of  deformation,  we  can  substitute  the
equivalent moment of inertia I' of the beam into its actual moment of inertia considering the contribution of tendons.

From Fig. (3), the equivalent moment is

Fig. (3). Cross section of beam with straight tendons.

(7)

where I 0 is the actual moment of inertia of the beam and AC is the cross-sectional area of the tendons.

Then the strain energy due to beam bending is

(8)

When the beam deflection reaches its maximum, that is, ymaxi = Ai,

(9)

Secondly,  considering  mechanism  1,  because  of  beam  bending,  the  tendons  are  released  and  its  strain  energy
decreases. The strain energy variation in the tendons is

(10)
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Fig. (4). Reduced length of the tendon Δl in the i-th order vibration.

where Δl is the reduced length of the tendons. The reduced length Δl can be found by using Fig. (4), in which arc CD is
the trajectory of the middle point of the beam and AD≈AC due to slight free vibration. According to geometric relations,

Thus,

(11)

Substituting Equation (11) into (10) gives

(12)

Substituting Equations (6), (9) and (12) into (4) can find

(13)

By solving Equation (13), the i-th order frequency can be expressed as

(14)

where the coefficient 

In the expression of the coefficient ζ, under the square root, the first term “1” represents the NBF of the simply

supported beam without tendons. The second term
 

 independent of prestress, denotes the NBF increase due to

the tendons. It belongs to mechanism 2(a). For straight tendon layout, the eccentricity has a much larger effect on NBFs
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than the cross-sectional area does. The third term
 

 denotes the influence of the prestress on NBFs. It

belongs  to  mechanism  1.  For  odd-order  vibrations,  the  value  of  the  third  term  is
 

,  which  means  the

pretension F decreases the odd-order frequencies. With the increase of i, the prestress effect is much weaker than the
effects caused by the eccentricity and the cross-sectional area of the tendons. The absolute value of the third term is less
than that of the second one, then ζ > 1, which indicate the effect of tendons. However, for even-order vibrations, the
value of the third term is equal to zero, which means the pretension F has no effect on the even-order frequencies for the
reason that the length of the tendons remains unchanged during the even-order vibration.

3.3. Influence Factors of NBFs of an EPSB with Straight Tendons

There are three tendon parameters, the prestress F, the eccentricity e and the cross-sectional area of the tendons Ac,
which affect the natural frequency f of an EPSB with straight tendons. Because the first-order vibration is usually the
most  important  in  practical  engineering,  only  the  first-order  natural  frequency  is  considered  here.  Fig.  (5)  directly
reflects their influence on the first-order natural frequency of the EPSB.

Fig. (5). First-order natural frequency of steel beam varying with prestress, eccentricity and cross-sectional area. (a) First-order
frequency varying with prestress and eccentricity (b) First-order frequency varying with prestress and cross-sectional area (c) First-
order frequency varying with eccentricity and cross-sectional area.

4. VERIFICATION BY USING FINITE ELEMENT METHOD

4.1. Finite Element Model for EPSB with Straight Tendons

Finite element simulation is carried out based on the software ANSYS to verify the theoretical formula obtained and
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find the effect of prestressing on NBFs of EPSBs. Fig. (6) shows the dimensions of an EPSB with straight tendons used
for finite  element analysis.  The stiffeners,  placed at  the ends and the midspan of the beam body,  are added for the
convenience of anchoring tendons. The beam body is 4 m in length with the I-section cross section and Chinese Q345
steel. The ϕ15.2 steel strand is used as prestressed tendons. Their material parameters are shown in Table 1.

Fig. (6). Dimensions of ESPB with straight tendons (unit: mm).

Table 1. Parameters of steel beam and prestressed strand.

Elastic Modulus Yield Strength Poisson Ratio Thermal Expansion Coefficient
Beam 210 GPa 345 MPa 0.3 1.2×10-5 /ºC
Strand 190 GPa 1860 MPa 0.3 1.9×10-5 /ºC

Fig. (7) shows the established finite element model for the EPSB, in which element SOLID 95 is used for the steel
beam including the stiffeners. The prestressed tendons are simulated by element LINK 10. The steel beam body and
tendons are both meshed based on mapping method. The size of solid elements is about 20 mm × 20 mm × 20 mm.

Fig. (7). Finite element model of the prestressed simply supported steel beam.

The anchor of the prestressed tendon and the stiffener of the beam body are regarded as coupling. The tendon can
slide through the middle stiffener along the axial direction. Therefore, they can only be coupled with only X and Y
degrees of freedom constrained. The prestress is applied by the cooling method.
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4.2. Comparison of Theoretical Results with Those by Using Finite Element Method

4.2.1. Influence of Prestress

When the eccentricity of the tendons is 90 mm, the first-order frequencies of the EPSB under different pretension
values are listed in Table 2. The first-order frequency of the ESPB obtained by ANSYS decreases gradually with the
pretension. When the prestress force increases from 0 to 1000 kN, the simulated and theoretical values of the first-order
frequency reduce by 3.44% and 5.29%, respectively. The maximum error of the theoretical values is 1.51% compared
with the simulated values.

Table 2. First-order frequencies of the EPSB under different prestress forces.

Pretension Value
(kN)

Theoretical
Value (Hz)

Change Rate
(%)

Simulated Value
(Hz)

Change Rate
(%)

Relative Error
(%)

0 52.24 — 52.02 — 0.42
200 51.70 -1.04 51.72 -0.58 -0.04
400 51.15 -2.08 51.38 -1.22 -0.46
600 50.60 -3.14 51.02 -1.91 -0.84
800 50.04 -4.21 50.64 -2.65 -1.19
1000 49.47 -5.29 50.23 -3.44 -1.51

4.2.2. Influence of Eccentricity of Tendon

Different EPSB models with different eccentric arrangements are established under the pretension of 800 kN. The
results  are  listed  in  Table  3.  The  first-order  frequency  of  the  EPSB  increases  with  the  eccentricity.  When  the
eccentricity is equal to 110 mm, the theoretical value increases by 5.99%, and the simulated value increases by 8.23%.
When the eccentricity is equal to 70 mm, the maximum error of the theoretical values is 1.74%.

Table 3. First-order frequencies of the EPSB under different eccentricities.

Eccentricity
(mm)

Theoretical Value
(Hz)

Change Rate
(%)

Simulated Value
(Hz)

Change Rate
(%)

Error
(%)

0 47.97 — 47.92 — 0.10
30 48.21 0.49 48.48 1.17 -0.57
50 48.62 1.34 49.30 2.87 -1.38
70 49.23 2.61 50.10 4.55 -1.74
90 50.04 4.29 50.64 5.67 -1.19
110 51.03 5.99 51.87 8.23 -1.62

4.2.3. Influence of Cross-sectional Area of Tendon

The cross-sectional area of the tendon can also affect NBF of the EPSB. The first-order frequencies of the EPSB
under different pretension values are listed in Table 4. They increase with the cross-sectional area of the tendon. When
the cross-sectional area increases from 54.8 mm2 to 285 mm2, which depends on the specifications of prestressed steel
strands, the theoretical value increases by 4.23%, and the simulated value increases by 3.92%. Comparing with the
simulated values, the maximum error of the theoretical values is 1.74%.

Table 4. First-order frequency of the EPSB under different cross-sectional area values of tendons.

Cross-sectional Area
(mm2)

Theoretical Value
(Hz)

Change Rate
(%)

Simulated Value
(Hz)

Change Rate
(%)

Error
(%)

54.8 48.47 — 49.29 — -1.65
98.7 48.87 0.82 49.73 0.89 -1.72
139 49.23 1.57 50.10 1.66 -1.74
191 49.69 2.52 50.55 2.57 -1.70
285 50.52 4.23 51.22 3.92 -1.36

CONCLUSION

The  formula  for  NBFs  of  a  simply  supported  EPSB  with  straight  tendons  has  been  developed  based  on  the
mechanism of the prestressed system and can accurately reflect the variation of frequency with prestress parameters. It
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conforms  well  to  the  numerical  results  through  the  finite  element  method,  and  provides  a  reliable  reference  for
engineering applications.

From this formula, the NBFs of the ESPB with straight tendons increases with the eccentricity and cross-sectional
area of the prestressed tendons, and the eccentricity has a much larger effect on NBF than the cross-sectional area does.
However, the odd-order frequencies decrease with the prestress force and the prestress force has no influence on the
oven-order frequencies. With the increase of the order number, the prestress effect is much weaker than the effects
caused by the eccentricity and cross-sectional area of the tendon.
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