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Abstract:
Background: Unmanned aerial vehicle (UAV) systems have underwent significant advancements in recent years,
which enabled the capture of high-resolution images and accurate measurements, with the tremendous development
in  artificial  intelligence,  especially  deep  learning  techniques,  Which  allows  it  to  be  used  in  the  development  of
Drainage infrastructures that represent a major challenge to confront the flood risks in urban areas and represent a
considerable investment, but they are often not as well classified as they should be.

Methods: In this study, we present an automatic framework for the detection of sewer inlets and Ground Control
Points (GCPs) from image clouds acquired by an Unmanned Aerial Vehicle (UAV) based on a YOLO CNN architecture.
The framework depends on the high image overlap of unmanned aerial vehicle imaging surveys. The framework uses
the latest YOLO model trained to detect and localize sewer inlets and Ground Control Points (GCPs) in aerial images
with a ground sampling distance (GSD) of 1 cm/pixel. Novel Object-detection algorithms, including YOLOv5, YOLOv7,
and YOLOv8 were  compared in  terms of  the  classification  and localization  of  sewer  inlets  and GCPs marks.  The
approach is evaluated by cross-validating results from an image cloud of 500 UAV images captured over a 40,000-m2

study area with 30 sewer inlets and 90 GCPs. To analyze the model accuracy among classes, two-way ANOVA is used.

Results: Images with models’ performances from the literature, the new YOLO model tested on UAV images in this
study demonstrates satisfactory performance, improving both precision and recall. The results show that YOLOv5
offers the best precision (91%) and recall (96%), whereas YOLOv8 achieved less accuracy in precision and recall
(82%)  and  (80%),  respectively.  Additionally,  increasing  image  size  in  the  training  stage  is  a  very  important
modification  in  the  model.

Conclusion: The study approach has a remarkable ability to detect sewer inlets and can be used to develop the
inventory of drainage infrastructure in urban areas.

Keywords: Drainage mapping, YOLO algorism, Small object detection, Unmanned aerial vehicle, Urban drainage,
ANOVA.
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1. INTRODUCTION
Urban  growth  is  a  continuing  trend,  and  the

development of entombed utility networks is an important
part of its outgrowth, but locating network items is a hard

mission.  The  object  classification  (larger  than  houses  or
equal) in aerial images has been extensively researched in
the  last  studies,  but  small  object  localization  is  very
challenging  and  rarely  studied  because  of  many  factors,
such  as  the  difference  in  object  colors,  crowded
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neighborhoods,  aspect  ratios,  shadow  effect,  and  non-
uniform  background  [1].

1.1. Artificial Intelligence (AI) and Remote Sensing
(RS)

Artificial  Intelligence  (AI)  and  Remote  sensing  (RS)
present  an  automated  solution  to  error-prone  and
expensive traditional data collection. Remote sensing (RS)
processes  depend  on  data  collected  for  small
infrastructure  objects  at  street  level  that  are  found  on
roads.  In  that  respect,  aerial  imaging  is  very  reliable;
aerial  imagery  with  high  resolution  can  normally  be
georeferenced  and  rectified  with  centimeter-level
accuracy.  Although  the  georeferencing  accuracy  and
rectification depend on the quantity and quality of GCPs,
this is usually not important in height terrain urban areas.
UAV imagery achieves this, particularly thanks to its large
image  overlap  and  very  high  GSD.  Several  studies
investigated manhole cover detection, but sewer inlet (S.I)
detection in aerial imagery has not been studied. From the
standpoint  of  remote  sensing,  sewer  inlets  are  like
manhole  covers  in  terms  of  construction  material,
frequency,  location  of  occurrence,  and  size.  So,  it's
important to illustrate the latest research in the detection
of  manhole  cover.  Pasquet  et  al.  combined  detection
method,  predictions  from  the  SVM  support  vector
machine,  and  HOG  features  with  detection  from  a
geometric  circle  filter.  Trained  and  tested  on  GSD  4
cm/pixel  aerial  imagery,  the  method  achieved  detection
equal  to  40%  of  total  manholes  with  80%  precision  [2].
More  recently,  Commandre  et  al.  implemented  a  deep
learning  CNN  to  detect  manholes  using  aerial  imagery
with  a  (5  cm/pix)  resolution.  Although  the  resolution  is
lower,  the  performance  achieved  a  recall  of  50%  and  a
precision of 69% [3]. Most of studies apply detection in a
single  view,  to  enhance  the  performance  of  detection,
Vitry, Schindler et al. used multiple views and a Viola and
Jones  model  to  detect  (S.I)  in  aerial  images  with  3–3.5
cm/pixel resolution. In the multiview approach compared
with  the  single-view  detector  showed  improvement  in
average precision, which increased from 65% to 73% [1].
The proposed method by Zhou et al. classifies the images
into types of rainy and non-rainy, then based on the coarse
classification results, performs manhole cover detections.
The  method  achieves  an  accuracy  in  detecting  manhole
cover  of  86%  and  an  F1  score  of  87%  using  the  SVM
model  [4].  For  aerial  detection  applications,  UAVs  are  a
natural  competitor:  when  creating  orthoimage  using
UAVs, recommended high overlap captured aerial images
to reduce perspective distortion resulting from low flight
height. It is recommended to have an overlap of more than
50%  in  the  side  and  70%  in  the  front  [5].  The  high
accuracy was achieved at (50 m) a flight altitude and (10)
GCPs also proving that the accuracy of (X, Y) depends on
the GCPs number. Mirko et al. illustrated the effect of the
GCPs on the geometric accuracy of photogrammetric. The
results illustrated that 3 GCPs for georeferencing for GIS
applications,  and  it  was  recommended  that  7  GCPs  and
cartographic  production  need  15  GCPs  [6].  Jiménez-
Jiménez  2021  et  al.  showed  the  DTMs'  accuracy  and

quality  depending  on  four  factors:  (1)  the  UAV  system,
either camera or UAV platforms; (2) image acquisition and
flight  planning  (image overlap,  flight  altitude,  flight  line
orientation,  UAV  speed,  georeferencing,  and  camera
configuration) (3) photogrammetric digital terrain model
generation  (software,  ground  filtering,  and  DEM
generation)  and  (4)  geomorphology.  They  recommended
optimizing process variables to have high-accuracy DTMs
[7]. Liu, Han et al. studied the influence of five factors on
UAV photogrammetry (altitude, image resolution, overlap
(side and front), GCPs, and focal length), The results prove
a better design for processes that produce high accuracy
[8].  A few years ago,  J.  Redmon et al.  presented a novel
model based on a Convolution Neural Network for object
detection named You Only Look Once (YOLO). They used a
single  CNN  to  predict  bounding  boxes  and  then  class
probabilities directly from the full image in one evaluation.
So,  the  detection  pipeline  can  be  enhanced  directly  on
prediction  performance  [9].  Since  the  original  version
(YOLOv1) of the novel model achieves a low (mAP), they
have improved the model to a new version (YOLOv2) [10].
YOLO deep learning method in the road field presents an
applicable method for the detection of road diseases like
pavement  crack  prediction  [11].  Zhu et  al.  proposed the
capture of road distress images using a UAV depending on
three CNN models for object detection YOLOv4, R-CNN,
and  YOLOv3  that  were  trained  on  the  dataset,  and
compared their performance [12]. In the agriculture field,
Puliti  et  al.  used  the  YOLOv5  model  to  recognize  tree
leaves  and  then  classify  the  trees  depending  on  leaves
damage. UAV imagery was acquired from 89 study areas
and was manually annotated into 55 thousand single trees
classified  into  three  classes  based  on  their  health.  The
results showed a precision of 76% and recall of 78% [13].
Recently,  new  versions  of  the  YOLO  model,  namely,
YOLOv5,  YOLOv7,  and  YOLOv8,  have  become  more
accurate  in  object  detection  [14].

1.2. Scope and Novelty of Study
The  study  aims  to  create  an  automated  method  for

detecting small objects to identify sewer inlets using UAV
clouds for orthophoto. In total, 500 images were acquired
covering  an  area  =40000  square  meters  used  as  a  case
study with 30 S.I sewer inlets and 90 GCPs. Additionally,
the optimal UAV flight settings were examined to ensure
accurate  orthophoto  and  DEM  generation  using  the
Agisoft  Metashape  program.  Novel  Object-detection
algorithms,  including  YOLOv5,  YOLOv7,  and  YOLOv8,
were  compared  to  the  classification  of  sewer  inlets  and
GCPs.  This  study  is  the  first  clarification  of  the  latest
YOLO  detector  based  on  UAV  images  in  the  water
management  field.

2. DATASETS AND STUDY AREA

2.1. Data Acquisition
A  low-cost  UAV  (DJI  Phantom)  is  used  to  acquire

images during a half-hour maximum flight time. The UAV
has  a  16  MP  compact  digital  camera  (8.8  mm  Focal
Length)  controlled  by  UAV  autopilot.  The  GCPs
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coordinates were determined by a Trimble R8 GNSS. The
UAV was flown over an area of 40000 m2 and 40 m flight
height.  In total,  500 images were taken with a GSD of 1

cm/pixel. In the study area, 30 sewer inlets and 90 GCPs
were identified in the UAV images as shown in Table 1.

Table 1. Characteristics of the study area and UAV.

Location Mosco-Russia

Date of data collection January 2021
Weather case during flight Overcast

Area 40,000 m2

Altitude 40 m average
Lateral and Frontal overlap 80% and 60% respectively

No. of GCPs 90
Data Quantity 500 images

Aquation data duration 2 * 30 min
GSD Image 1 centimeter per pixel

Image resolution 4864 x 3648 pix

Fig. (1). Study area (40,000 m2) used as a case study for this work. The Generated Orthoimage and DEM.

Table 2. Registration error of DEM and Orthoimage Generation evaluated at (GCPs).

GCP Error X (cm) Error Y (cm) Error Z (cm)

Min -7.9 -1.2 -39.1
Max 2.7 1.2 54.9
Total 4.9 0.9 37.5
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Table 3. Methodology list.

Seq Tool Function

1 UAV DJI-phantom Image acquisition.
2 GPS Observation GCPs coordinates.
3 Metashape Agisoft Orthophoto and DEM Generation.
4 Python The model writing language.
5 Roboflow Dataset annotation.
6 YOLO Detector Automatic Sewer inlets Localization.
7 Google Colab Environment of Model Training and Validation.
8 CPU Environment of Model testing.
9 Arc GIS Map Production & Orthophoto Clipping and Merging.
10 ANOVA Analysis of Variances for results.

Table 4. Details of google colab server.

NVIDIA- 525.85.12 Driver: 525.85.12 CUDA:12.0

GPU Name Fan Temp Perf Bus-Id .A Memory-Usage Volatile .GPU- M.
Tesla T4

N/A 45C P0 25W/70W 0MiB / 15360 MiB 0% Default
N/A

2.2. Image Processing and Orthophoto Production
The  Agisoft  program  was  used  for  image  processing

[15]  to  evaluate  the  external  and internal  parameters  of
the camera and produce an orthoimage as well as DEM for
the case study using the steps  as  shown in  the program
(Fig. 1).

The  orthoimage  is  generated  from  the  image
projections  by  making  a  mosaic.  For  orthoimage
georeferencing  ten  GCPs  were  used.  The  study  area  is
shown in  Fig.  (1)  and  the  registration  error  is  shown in
Table 2. The processing time to generate the orthophoto
and DEM was 12 hours (using core i5,  12 GB RAM, and
card 2 GB).

3. METHOD
Table  3.  Data  collection  instruments  and  image

processing  tools.

3.1. Experimental Environment
The YOLO detectors were trained using 500 full-scale

images captured with a resolution of 4864 x 3648 pixels,
which  needs  a  long  processing  time  to  train  detectors.
Because  of  the  limited  computing  resources,  the
experiments  were  conducted  on  a  Google  Colab  cloud
server. PyTorch 1.2.0 was the experimental frame. Python
was  used  for  writing  object-detection  algorithms.  to
accelerate  training  GPUs  were  used  (Table  4).  PyTorch
1.2.0  was  the  experimental  frame.  Python  was  used  for
writing object-detection algorithms. to accelerate training
GPUs were used.

3.2. Framework of Machine Learning
Workflow to train YOLO, as illustrated in Fig. (2), The

study  depends  on  resizing  the  original  image  into  two
image sizes before input to the network. First, the original
image  was  resized  to  640  pixels  in  YOLO5,  YOLO7,  and

YOLO8.  Second,  the  original  image  was  resized  to  1280
pixels.  Before  the  training  stage,  Sewer  Inlet  and  GCPs
were labeled manually by rectangular boxes (ground-truth
boxes)  in  all  images.  The  collected  images  were  divided
into  a  training  dataset  with  proportions  of  0.8  and  a
validation  dataset  with  proportions  of  0.2.  Data
augmentation using roboflow was performed to increase
the training dataset by three times. Finally, the dataset for
training  based  on  epochs  (100  to  150)  was  input  to  the
YOLO network architecture.

3.3. Model Training
The YOLO Convolution Neural Network architecture is

a single-stage detector consisting of three parts: The first
component  is  named  backbone  to  extract  features  of  an
input  image  using  cross-stage  partial  architecture  that
enhances the model size and speed of  boosting [16,  17].
The  second  component,  named  the  neck,  is  used  to
enhance  the  ability  of  the  model  on  object  scaling  and
unseen  data  transformation  using  path  Aggregation  net
[18].  The third and final  component  named Head output
vectors generated with the confidence of class, bounding
box, and scores. Such a step is important to perform the
final  detection  parameters.  This  step-in  version  5  and
previous versions have not changed [13]. The Sewer Inlets
prediction using the YOLO model was studied in terms of
precision,  recall,  and  F1  score.  Fig.  (3)  shows  the  small
objects, Sewer inlets and GCPs used in training.

3.4. Loss Function
YOLO  model  corrected  confidence  values  and

coordinates  of  the  bounding  box  using  the  square  error
loss  are  called  the  loss  function  [9].  Regression  of  the
bounding box, objectness, and probability of a class for the
three  scores  computed  the  loss  function  and  then  the
compounded  loss  function  [13].
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Fig. (2). Flowchart of the proposed methodology.

Fig. (3). Shows the small objects used in experiment.
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Table 5. The bounding box identifications.

Ground Truth Bounding Box Results Prediction -

- (Positive) (negative)
Objects (existing actually) (TP) (FN)

Nonobjects (not existing actually) (FP) (TN)

3.5. Evaluation Metrics
Evaluation  metrics  of  the  model  are  Recall  (R),

Precision  (P),  which  is  equivalent  to  accuracy,  and
intersection over  union (IoU),  identical  to  mean average
precision (mAP) [13] as illustrated in Eqs. (1 and 2):

(1)

(2)

Where:
Bp = Bounding Box predicted,
Bg = ground truth (BB),
(TP) = number of correctly predicted object samples,
(FP)  =  predictions  number  where  non-objects  are

founded,
(FN) = number of undetected objects,
Accuracy model evaluated by metrics, P, R, and F1 as

shown in Table 5 and Eqs. (3-5) [19]:

(3)

(4)

(5)

Precision score equals correct prediction percentage, a
greater IOU indicates a smaller P. The F1 score indicates
confirmation  of  R  and  P  metrics,  and  it  is  the  harmonic
mean of them. AP equals the P–R curve integration, which
equals the area under the P_R curve.

3.6. Post-processing and Mapping
The possibility of using YOLOv5, YOLOv7, and YOLOv8

for  purposes  of  mapping  with  orthophoto  generating  by
image UAV needs to add post-processing steps, which are
as follows: First, the UAV orthomosaic tiling: As described
[20]  the  orthomosaic  were  tiled  into  suitable  area  with
geoTIFF  tiles  (The  image  size  in  the  prediction  stage
equals  the  image  size  in  the  training  stage)  using  an
overlap = 2 m between tiles. Second step was predicting
each  tile:  using  the  best  weights  generated  from  the
training model, for each tile coordinates of bounding box
were  predicted.  Third,  Image/map:  YOLO  predicted
bounding  box  coordinates  from  the  original  images'  top
left corner in pixel values and then we converted it using
the  UTM  coordinates  to  a  geographical  space.  Fourth,
Bounding/box:  when  the  intersection  between  bounding
box pairs was > 0.75, the smallest confidence of class and
box was discarded.

(a) YOLOv5 

Fig. 4 contd.....
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Fig. (4a-c). Sewer inlet and GCPs precision recall curve.

4. RESULTS AND DISCUSSION

4.1. Effect of YOLO Detectors on Object Types
Fig. (4) shows the P–R curves for sewer inlet and GCP

using three YOLO models. The P–R curves for sewer inlet
in  Fig.  (4)  cover  a  larger  area  than  the  curve  of  GCPs,
except Fig. (4a). The P–R curves for GCPs cover a larger
area than the curve of sewer inlet,  but it  still  covers the
area  greater  than 93% indicating  that  sewer  inlets  have
higher AP values.

Figs.  (5a  and  b)  shows  the  P,  R,  PR,  F1  scores  for
Sewer  inlet  and  GCPs  using  YOLO  detector.  YOLOv8
exhibits inferior performance in GCPs detection more than
in  sewer  inlets  with  a  mAP  =  80%  and  94%.  YOLOv7
exhibits good performance than YOLOv8 with an F1 score
and  recall  of  85%  and  90%,  respectively.  YOLOv5
demonstrated better overall performance, with F1 score of
95.4%  and  recall  of  96.4.  Compared  with  model
performances  from  the  literature,  the  YOLOv5  model
tested  on  UAV  images  in  this  study  demonstrates

                                   (b)YOLOv7

(c)YOLOv8
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satisfactory  performance.  Schindler  et  al  used  a  test
dataset of 252 images for S.inlet detection, achieving an
AP of 73% with a Viola–Jones classifier. (Nie et al. used a
test  dataset  of  400  images  for  pavement  distress
detection, achieving a MAP of 53.1% with YOLOv3. Mao et
al.  made  some  improvements  based  on  the  original
YOLOv3 baseline, achieving a mAP of 52.3%. Zhong et al.
used  the  YOLOv3  model  tested  on  UAPD  for  pavement
distress  detection,  achieving  a  mAP  of  56.6%.  Fig.  (5)
shows  that  YOLOv5  and  YOLOv7  generally  performed
better than YOLOv8. Anchors in the three scales extract
the  object  features  of  different  regions.  With  the
concatenation of low-level texture information with higher
semantic  features,  YOLOv5,  YOLOv7  and  YOLOv8  are
vigorous in sewer inlet detection. Compared with YOLOv8,
YOLOv5 has a higher MAP, indicating better performance.
They  have  similar  architectures;  the  difference  is  that
YOLOv8  includes  some  improvements.  These
improvements had little impact on small object detection
with  UAV  images.  Although  the  original  YOLOv8  was
found to be better than YOLOv5 with the COCO dataset,

the performance with our dataset illustrates that YOLOv5
is still robust in sewer inlet detection and can be studied
further to pursue a higher AP value. To verify the stability
of  these  models,  repeated  predictions  were  made  using
the three models.

4.2. Effect of Repeat Training
Five additional  training experiments  were performed

to  ensure  the  validity  of  the  model  prediction
performance.  The  experimental  configuration  was  the
same  as  that  in  the  previous  training.  Figs.  (6a  and  b)
shows the mAP and F1 score of the third model. Fig. (6)
illustrates  the  five  experiments'  results  with  stable
performance. The error is in the range of 3% between all
experiments,  with  volatility.  Although  the  same  weights
are  used,  the  training  results  are  slightly  different  each
time.  Due  to  the  random selection  of  training  images  in
each  batch  and  the  variety  of  gradients,  it  has  led  to
slightly different predictive results in each training round.
The  results  of  the  YOLOv5  model  once  again  showed  a
performance distinct from other models.

(a) Sewer Inlets 
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Fig. (5a-b). Metrics (P-R, P, R and F1 score) for three YOLO detectors.
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Fig. (6a-b). Model prediction with repeated training (mAP) and (F1 score) respectively.

4.3. Effect of MaxEpoch on Dataset Augmentation
Adjusting  MaxEpoch  significantly  affects  object

detection  accuracy.  To  enhance  the  S.  inlet  and  GCPs
detection  performance  of  YOLO  detectors,  MaxEpoch
should be at least 50. An epoch refers to the total number
of  iterations  through  the  entire  training  dataset  in  one
cycle and is critical to deep learning performance (Deng,
Lu  et  al.  2020).  Determining  the  number  of  MaxEpochs
can provide information regarding the maximum iterative
epochs  that  enhance  network  performance  to  a  certain
degree, although no further significant improvement can
be  achieved.  In  this  study,  max  epochs  (150)  in  the
training were investigated. To examine the effect yielded,
the  testing  accuracy  of  YOLOv5  was  recorded,  and  the
result is presented in Fig. (7a and b). The error bands of
accuracy  for  all  the  augmentation  steps  were  generally
<5%,  which  indicates  high  testing  replicability.  The
accuracy  of  object  detection  increased  significantly  as
MaxEpochs  increased  up  to  50.  However,  a  further
increase in MaxEpoch did not yield much better detection
performance  yet  extended  the  runtime  in  cases  900
images  and  1200  images,  but  it  increased  after  100
MaxEpochs  in  300  images  and  600  images.  Hence,  the
optimal  MaxEpoch  was  determined  to  be  70–100  for
achieving  accuracies  exceeding  94% by  900  images  and
1200 images. For 600 images, the accuracy improved by
more  than  95%  after  100  MaxEpochs  was  increased.  In
general,  dataset  augmentation  achieved  higher  (95%)

accuracies  at  less  than  100  MaxEpoch,  to  achieve  the
same  accuracy  when  dataset  augmentation  did  not  use
more  than  100  Max  Epoch  indicating  augmentation
dataset  reducing  MaxEpochs.

The  study  presents  recall  and  F1  score  for  testing
datasets,  as  shown  in  Figs.  (8a  and  b).  YOLOv5  and
YOLOv8 achieved values > (95% and 77%) for recall, and
> (95% and 74) for F1-score. The reliability of autonomous
Sewer Inlet detection in UAV images by a deep learning
method is  very much dependent on the databank size of
the training images. During the training process, 300, 600,
900  and  1200  training  images  were  created  via  data
augmentation and input into the deep learning network of
YOLO.  Fig.  (8)  displays  the  average accuracies  of  YOLO
detectors  trained  by  different  numbers  of  images.  In
general, the accuracy of Sewer Inlet detection increased
to a platform with the number of training images. YOLOv5
presented a  significant  improvement  in  accuracy (Recall
was increased from 93% to 98%), when augmentation was
applied on training images. YOLOv7 showed relatively low
accuracies  in  terms  of  Sewer  Inlet  detection  when  the
number of training images increased from 300 to 600, but
the  Recall  was  still  more  than  95%.  Compared  with
YOLOv5,  it  indicated  better  performance  in  terms  of
accuracy over the range of a number of training images.
Based  on  this  parametric  evaluation,  a  minimum  of  300
training  images  are  recommended  for  training  a  YOLO
detector such that it reliably detects Sewer inlets in UAV
images.
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Fig. (7a-b). Effect maxepochs on dataset augmentation based on YOLOv5.
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Fig. (8a-b). Effect of augmentation on recall and F1 score.
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4.4. Results of YOLO Models
Results  of  YOLO  model  are  shown  in  Fig.  (9a).

Predictions of Sewer inlets and GCPs using YOLOv5 were
generally better than YOLOv8. Based on the mAP of the SI
and  GCPs  were  calculated  as  80% for  the  three  models.
Sewer inlet detection using YOLOv5 was 96% for Recall,
compared with 73% achieved by Vitryet  al.,  proof  of  the
potential  of  UAV  sewer  inlet  prediction  based  on  CNN.
Sewer inlet  and GCPs prediction results  by YOLOv5 and
YOLOv8 are presented in Figs. (9a and b), YOLOv5 is the
best  model  in  prediction.  Sewer  inlets  have  parallel
features  and  are  extensively  annotated  in  a  dataset,  so,

they can be predicted well with high-confidence values, as
shown in Fig. (9).

4.5. Orthophoto Predictions
The  YOLOv5  model  appeared  to  have  excellent

consistency  between  the  visible  Sewer  Inlets  and
Bounding  box  prediction  and  highlighted  in  the
Orthophoto  as  shown  in  Fig.  (10).  The  model  has  an
important  advantage  as  the  ability  to  recognize  Sewer
Inlets  in  crowded  scenes  and  different  features  in
Orthophoto with a (GSD) of 1 cm/pixel; the YOLOv5 model
achieved 96% accuracy for Sewer Inlets detection.

Fig. (9a). Sewer inlets and GCPs detection results. YOLOv5.
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Fig. (9b). Sewer inlets and GCPs detection results (YOLOv8).

4.6. ANOVA Two-way Test
To analyze the model accuracy among classes, ANOVA

(two-way)  is  used  [24-26].  The  test  is  conducted  to
compare  the  (mAP)  for  two  classes  in  each  model.  Two
versions of the YOLO model (V5 and V8) called M and two
classes (S.Inlet and GCPs) called C are taken as factors.
ANOVA's  first  step  should  be  declared  null  [27].  A  Null
hypothesis is called H0. The alternative is called H1.

(6)

(7)

(8)

ANOVA  was  performed  as  illustrated  in  the  studies
[28, 29]. Here, the sum of squares was declared as three

types: sum of square for factor M (SSM), sum of square for
factor C (SSC), and sum of square for both factors M and
C  (SSMS).  The  two-way  ANOVA  can  be  calculated  by
declaring  the  factors  M  and  C  as  model  and  class,
respectively.  The  result  of  the  calculation  is  shown  in
Table  6.

From Table 6, the F-value is calculated as 130. So, it is
denoted as the calculated F-value.

(9)

(10)

Critical F-value is 4.5. So, it is denoted as tabulated F-
value.

(11)

H0: XM1 =XM2 = XM3:   :XMn (means of factor M is equal). 

H0: XS1 =XS2 = XS3:      :XSn (means of factor C is equal).

H0: XMS1 =XMS2 = XMS3:   :XMSn (means M and C are equal)

F -value (calculated) =130      Class  

F -value (calculated) =267      Model

F -value (crit)= 4.5           
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Fig. (10). Prediction of sewer inlets and GCPs in orthophoto.

Table 6. ANOVA results.

Source of Variation SS df MS F P-value F crit

Classes 211.25 1 211.25 130.582599 4.16471E-09 4.49399848
Models 432.45 1 432.45 267.315716 2.08489E-11 4.49399848

Interaction 555.458 1 555.458 343.352187 3.09506E-12 4.49399848
Error 25.884 16 1.61775 - - -
Total 1225.042 19 - - - -

When  the  calculated  F-value  is  greater  than  the
tabulated  F-value,  the  null  hypothesis  can  be  rejected.
Here, the calculated F-value is 130 and the critical F-value
is 4.5. Hence, the null hypothesis can be rejected, and the
alternative hypothesis can be accepted.

Analysis proves that there is a significant relationship
between the mean values of the two factors. By declaring
the  models  and  classes  as  two  factors,  the  two-way
analysis  proves  that  the  mean  values  of  (mAP)  vary
between  each  model  and  each  class,  (mAP)  was  better.
During S inlet, it reached 95% with YOLOv5, but in GCPs,
it was less than 77% with yolo8.

5. RECOMMENDATION
There are many possibilities for the development of an

automated  sewer  inlet  detection  approach  and  drainage
mapping  using  aerial  imagery,  but  two  main  limitations
need more study. First limitation, the sewer inlets are not

visible  in  (UAV)  images  because  they  are  temporarily
covered by trees and debris or vehicles. This problem can
be reduced by  performing flights  at  different  times.  The
second limitation,  there are many sewer inlet  forms and
situations. In our case study, only one type of sewer inlet
is  trained.  To adjust  this  variety,  first  must  increase the
training  data  variety,  second,  best  adaptation  of  image
capturing,  like  increasing  camera  tilt.  Therefore,
depending on the relevance of  the illustrated limitations
and  the  completeness  required  of  the  data,  it  may  be
necessary to either adjust the detection approach or verify
the detection results manually.

CONCLUSION
The  paper  studied  how  to  develop  a  YOLO  model,

through the  combined use  of  a  labeled database  of  UAV
images  and  Convolution  Neural  Networks,  to  predict
sewer inlets and GCPs accurately and mapping them. The
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important  study  results  are  that  the  model  achieved
suitable  accuracy  metrics  for  a  sewer  inlet,  with  a
validated  case  study  using  500  UAV  full-scale  images.

Results  show  that  the  use  of  the  YOLOv5  model
increases  (AP)  from  0.73  to  0.92  as  compared  to  a
literature  review.  The gain  is  attributed to  the  ability  to
exploit the full resolution of the raw UAV images.

This study can identify more than 92% of the (S.I and
GCPs)  with  a  precision  of  96%  and  localize  them  when
using a YOLOv5 detector that trained on 500 UAV images
and  max  epochs  200  and  based  on  YOLOv8 at  the  same
factors  was  able  to  identify  about  82%  of  the  (S.I  and
GCPs) with precision of 80%.

Both P, R, and mAP are substantially better than the
last  results  for  the  sewer  inlet  and  manhole  cover
detection.

Now, urban water practitioners can create and update
their inventory, the value added by the YOLOv5 detector is
more  than  the  incremental  improvement  that  is  usually
gained  by  tuning  the  image  classification  method.  Thus,
this  (S.I)  detection  solution  can  be  used  to  develop  the
inventory of drainage infrastructure in urban areas.
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