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Abstract:
Introduction:  Wildfires  are  an  unexpected  global  hazard  that  significantly  impact  environmental  change.  An
accurate and affordable method of identifying and monitoring on wildfire areas is to use coarse spatial resolution
sensors,  such  as  the  Moderate  Resolution  Imaging  Spectroradiometer  (MODIS)  and  Visible  Infrared  Imaging
Radiometer Suite (VIIRS). Compared to MODIS, wildfire observations from VIIRS sensor data are around three times
as extensive.

Objective: The traditional contextual wildfire detection method using VIIRS data mainly depends on the threshold
value for classifying the fire or no fire which provides less performance for detecting wildfire areas and also fails in
detecting small fires. In this paper, a wildfire detection method using Wildfiredetect Convolution Neural Network
model is proposed for an effective wildfire detection and monitoring system using VIIRS data.

Methods: The proposed method uses the Convolutional Neural Network model and the study area dataset containing
fire  and  non-fire  spots  is  tested.  The  performance  metrics  such  as  recall  rate,  precision  rate,  omission  error,
commission error, F-measure and accuracy rate are considered for the model evaluation.

Results:  The  experimental  analysis  of  the  study  area  shows  a  99.69%  recall  rate,  99.79%  precision  rate,  0.3%
omission  error,  0.2%  commission  error,  99.73%  F-measure  and  99.7%  accuracy  values  for  training  data.  The
proposed method also proves to detect small fires in Alaska forest dataset for the testing data with 100% recall rate,
99.2% precision rate, 0% omission error, 0.7% commission error, 99.69% F-measure and 99.3% accuracy values. The
proposed model achieves a 26.17% higher accuracy rate than the improved contextual algorithm.

Conclusion: The experimental findings demonstrate that the proposed model identifies small fires and works well
with VIIRS data for wildfire detection and monitoring systems.

Keywords: Wildfire detection, Wildfire monitoring systems, Visible infrared imaging radiometer suite sensor data,
Remote sensing, Machine learning, Wildfiredetect convolutional neural network.
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1. INTRODUCTION
Natural and human activity may cause a wildfire and

humans are responsible for 90% of wildfires, with natural
causes  accounting  for  the  remaining  10%  [1].  Wildfires
have  an  impact  on  biodiversity,  local  and  global
ecosystems, degraded forests, plant and animal extinction,
and  climate  change.  The  development  of  an  efficient
wildfire detection system improves life safety and aids in
averting  repercussions  [2].  Satellite  remote  sensing  is
widely  used  for  detecting  and  characterizing  active
wildfires.  Polar-orbit  satellites  have  better  in  the  high
latitudes  by  orbits  converge  about  the  poles  and  the
imaging frequency on the earth's surface when compared
to  Geostationary  satellites.  The  Geostationary  satellites
provide high temporal resolution and are commonly used
for real  time wildfire detection [3].  However,  the Visible
Infrared Imaging Radiometer Suite (VIIRS) and Moderate
Resolution Imaging Spectroradiometer (MODIS) data give
higher spatial resolution and nighttime detection, building
up the geostationary data with detailed observations.

Satellite multispectral imaging sensors like VIIRS and
MODIS have been used in wildfire detection systems. The
infrared radiation released by burning biomass is utilized
in active fires of satellite remote sensing data. In order to
identify  the  image  pixels  whose  shape  on  the  earth's
surface  carry  an  active  combustion,  sensors  locate  the
fire's radiation in the electromagnetic spectrum, such as
the  shortwave,  mid,  and thermal  infrared  areas.  NASA’s
MODIS  and  VIIRS  are  the  most  widely  used  operational
fire  detection  products  with  sensors  on  polar-orbiting
satellites.  MODIS  detects  fires  using  a  contextual
algorithm in  1-km pixels,  firing  at  the  time  of  pass  over
under no smoke conditions [4].
Table  1.  Comparison  between  MODIS  and  VIIRS
sensors.

Items Modis Viirs

Sensor 36 spectral bands
16 moderate resolution bands

(M-bands), 5 HR imagery
bands (I bands), day (M13)

and night bands (M15)

Satellite Aqua and Terra Soumi National Polar-orbiting
Partnership

Fire detection
algorithm Contextual Thresholding and Contextual

Equatorial Pass
Terra (10:30 am

and 10:30 pm)Aqua
(1:30 pm and 1:30

am)
1:30 pm and 1:30 am

Resolution 1 km X 1 km 375m x 375 m & 750m x 750
m

Night time
performance Bad Good

Accuracy for finding
small fires No Yes

Canopy fire detection Bad Good
Note: [source from Schroeder et al. (2014) [5].

VIIRS  equipment  is  placed  in  National  Oceanic  and
Atmospheric  Administration  (NOAA-20)  and  Suomi
National  Polar  orbiting  Partnership  (SNPP)  and weather

satellites  for  monitoring  the  weather.  VIIRS  sensor
manufactured  and  designed  by  Raytheon  company  and
gives the highest spatial resolution by collecting imagery
and radiometric measurements such as atmosphere, land,
cryosphere and oceans using visible and infrared bands of
electromagnetic spectrum [5].

Since 2004, Forest Survey has been cautioning State
Forest  Department  of  wildfire  locations  identified  by
MODIS  sensors  on  board  Aqua  and  Terra  Satellites  of
NASA.  Initially,  fire  locations  detected  by  the  satellites
were transmitted through Fax and later through SMS and
email with advancements in communication technology. In
India,  Forest  and  Climate  Change  launched  Fire  Alert
System  (FAST)  from  the  Ministry  of  Environment  in
January  2019  to  monitor  wildfires  using  real-time
information from VIIRS.  The main characteristics  of  this
system are (i) wildfire alerts with high resolution of 375m
x  375m  VIIRS,  (ii)  process  automation,  (iii)  customized
alerts,  (iv)  improved  user  experience,  (v)  state  nodal
officers control panel [5]. Table 1 provides the comparison
between MODIS and VIIRS sensors.

From  Table  1,  The  VIIRS  offers  data  on  the
geographical coordinates, brightness temperature, time of
day,  satellite  view,  Fire  Radiative  Power  (FRP),  solar
zenith  angles  and  detection  confidence  (low,  nominal,
high)  [5].  In  order  to  give  higher  spatial  resolutions,
indicate  smaller  pixel  areas,  and enhance the  possibility
for active fire detection above MODIS, VIIRS incorporates
two  middle-wave  infrared  bands.  The  VIIRS  sensor
resolution  is  finer  than  MODIS,  the  purpose  of  covering
the entire area several times a day at a low cost to detect
small  fires.  The  following  are  some  key  distinctions
between  VIIRS  and  MODIS:

i. VIIRS observation is three times more detailed than
MODIS fire observation

ii. Data reduction steps like onboard pixel aggregation
scheme for VIIRS to cut down the pixel size gain have not
been used in MODIS.

iii.  The  VIIRS  identifies  small  fires  and  reattains  the
FRP more easily than MODIS.

iv. Insensitivity to small fires by MODIS can lead to the
deviation of fire emission estimation.

The detection of  active wildfires in target  area using
satellites  timely  information  about  the  wildfire  is  one
critical  area.  The  conventional  contextual  fire  detection
approach,  which  makes  use  of  VIIRS  data,  has  a  high
percentage  of  missing  fire  spots,  is  less  accurate,  and
unable  to  identify  small  fires.  The  main  goal  of  this
research is to develop a wildfire detection method using
Wildfiredetect  Convolutional  Neural  Network  (Wildfire-
detect  CNN)  method  to  provide  improved  accuracy  and
lower omission error on VIIRS data in India, since VIIRS
data  provides  an  accurate  and  cost-effective  solution  in
detecting  and  monitoring  wildfire  areas.  The  ability  to
accurately  identify  fire  spots  using  remote  sensing  data
improves  post-wildfire  operations,  decision  support  for
wildfire  management,  and  wildfire  prevention.
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The existing wildfire detection algorithms have some
key limitations such as providing false wildfire detection,
low accuracy in detecting wildfires, misinterpreted fires,
failure  in  small  fire  detection  and  reducing  detection
accuracy  due  to  weather  conditions  etc.  To  overcome
these  challenges,  efficient  wildfire  detection  algorithms
needs  to  be  developed  for  wildfire  detection  and
monitoring  systems.

The summarization of our contribution as follow:

The new wildfire detection using Wildfiredetect CNN is
proposed for effective wildfire detection on VIIRS data in
India.
The  proposed  Wildfiredetect  CNN method  is  developed
and tested with the fire/non fire spots dataset.
The  various  performance  metrics  such  as  recall  rate,
precision  rate,  omission  error,  commission  error,  F-
measure  and  accuracy  rate  are  considered  for  the
evaluation  of  the  proposed  model  with  the  existing
method.

Research paper sections are arranged in the following
order.  Section  2  elaborates  the  related  work  done  on  the
contextual  method  and  machine  learning  based  wildfire
detection  algorithm.  In  section  3,  the  proposed
Wildfiredetect  CNN  method  for  active  fire  detection  is
presented. Section 4 provides a detailed study area and the
experimental  setup  conducted  based  on  the  evaluation
metrics  are analyzed in  section 5.  Conclusion and further
work were depicted in section 6.

2. RELATED WORK
Satellite remote sensing for wildfire detection combines

temperature brightness variations in the visible and near-
infrared  bands  with  thermal  infrared  band  reflection  to
identify fires. Recently, several researchers have employed
data  from two  distinct  polar  orbiting  instruments  -  VIIRS
and MODIS -  to  provide  accurate  wildfire  detection.  Data
that is appropriate for wildfire detection on a global scale is
provided by fire products obtained from VIIRS and MODIS
imagery.

2.1.  Contextual  Method  based  Wildfire  Detection
System

The contextual method using VIIRS data comprises an
initial  threshold  for  identifying  the  fire  pixel,  a
circumstantial test for confirming fire in likely fire pixel and
threshold to turn down false alarms. VIIRS I4 band is the
essential  driver  of  the  wildfire  detection  which  provides
higher performance for the VIIRS 375 m current fire data
when compared to the VIIRS 750 m standard fire product
utilizing day and night time data. The VIIRS 375 m fire data
achieved greater potential with improved consistency than
MODIS fire detection data [5]. This work has limitations in
showing the difficulty of low confidence with a high rate of
wildfire detections. Contextual wildfire detection algorithm
has some weaknesses such as determining static threshold
for likely fire pixels, disregarding the perceptiveness of test
conditions and ignoring small and cold fires. Table 2 shows
the comparative analysis of wildfire detection approaches in
existing work with the results and limitations.

Table 2. Comparative analysis of wildfire detection approaches.

Author Approach Results Limitations

Schroeder et al.
(2014) [5]

Biomass burning in day and nighttime and
thermal anomalies are detected in MODIS

fire product using contextual method
commission errors less than 1.2% Fails to detect small fires

Waigl et al. (2017)
[6]

VIFDAHL used to identify low and high
intensity active fire using Alaska's boreal

forest fires 2016 data
Detect more fire pixels for MODIS and VIIRS global

fire products
Repeated fire point detections in the
same location needs to be focused

for further improvement

Zhang et al. (2017)
[7]

Utilization of I-Band 375 m and 750 m M-
Band data for active fire detection and

characterization

Provides 5 to 10 times higher fire pixels than
MODIS data. Generates reliable FRP records 4

times higher than MODIS
Fails to analysis the fire emissions

rate

Wang et al. (2020)
[8]

A novel method to resample Day-Night band
(DNB) pixels to the M-band pixels Provides higher accuracy during nighttime fire Fails to compare the results with

standard data

Fu et al. (2020) [9]
FRP and Fire detection between MYD14 and

VNP14IMG are compared by the inspection in
MODIS-VIIRS overlapping orbits

VIIRS detect fire pixels by 65% and MODIS detect
by 83%. FRP was lower for VIIRS compared to

MODIS
False positive alarms needs to

analyzed for better improvement

Zhang et al. (2021)
[10]

Adaptive threshold is selected by bubble sort
method based on the small fires radiation

characteristics

Accuracy - 53.85% in summer and 73.53% in
winter. Overall 18.69% greater accuracy with

28.91% lower error rate

The missing fire points has to be
analyzed and verified for better

improvement

Gong, A et al., 2021
[11]

Spatio-temporal contextual brightness
temperature prediction model (STCM)

RMSE is 12.54% lower than that of Contextual
method and 9.12% lower than that of Temporal-

Contextual method
Fails to detect small fires.

Coskuner KA.
(2022) [12] Survey paper for wildfires monitoring The accuracy of VIIRS lies between 1.3% to 25.6%

for different forest land covers

This investigation show that some
limitations reside in VIIRS and

MODIS active fire products for the
wildfires evaluation of less than 10

ha.

Firouz Aghazadeh
2023 [13] Dynamic algorithm

Various threshold based contextual method has
been evaluated. IGBP algorithm detects 86%

wildfire with a 14% error rate.
The accuracy can be improved
further for better performance
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Waigl  et  al.  [6]  developed  the  modified  contextual
wildfire  detection  algorithm  called  as  VIIRS  I-band  Fire
Detection Algorithm for High Latitudes (VIFDAHL) using
the data obtained during Alaska's boreal wildfires on 2016
fire period. The proposed VIFDAHL algorithm successfully
classifies the fire pixels as high or low intensity and also
removes the duplicate detections due to the bowtie effect
in VIIRS data. This method accurately determined 30–90%
more fire pixels in VIIRS global fire products than MODIS.

Zhang et al. [7] presented a VIIRS-IM (combination of
750  m  M-Band  and  375  m  I-Band  data)  for  wildfire
detection.  Eastern  China  area  was  considered  for  this
study  and  showed  that  the  I-Band  VIIRS  data  facilitates
smaller  active  wildfire  detection.  The  study  results  are
compared with Aqua-MODIS and the existent VIIRS I-Band
wildfire  detections.  VIFDAHL  captures  the  fire  distri-
bution,  accurately classifies high and low intensity fires,
and  correctly  detects  30–90%  higher  fire  pixels  in
comparison  with  MODIS  data.  Proposed  VIIRS-IM
considered the FRP metrics and experimental results show
that the lowest FRP pixels in the agricultural burning area
of eastern China.

Fire  Radiative  Power  (FRP)  is  the  release  rate  of
radiative fire energy and has been applied for estimation
of  fire  intensity,  calculation  of  smoke  injection  height,
severity of fire and post-fire forest productivity. FRP can
be calculated by using the Eq. (1).

(1)

where L4f and L4b are radiances of fire and background
pixels  at  4  µm,  Afp  is  the  fire  pixel  area,  σ  is  the
Stefan–Boltzmann constant (5.67×10-8 Wm−2 K−4), τ4 is the
transmittance  of  atmospheric  at  4  µm,  and  a  is  an
empirical  constant  (3.0  ∗  10−9Wm−2sr−1µm−1k−4).

VIIRS  is  keen  to  visible  light  from  wildfires  during
nighttime. Resampling by pixel radiances of the Day-Night
Band  (DNB)  from  M-band  footprint  pixels  to  increase
nighttime  wildfire  detection  has  been  presented  [8].  A
study of the 2018 California Camp Fire has been taken and
shown that  the  method provides  higher  accuracy  during
the nighttime fire.

The wildfire detection and performance based on FRP
estimation of VIIRS and MODIS fire regimes are analyzed
[9]. This study surveyed VIIRS data in Northeastern Asia
between  2012–2017  where  wildfires  and  burning  of
agricultural land are prevalent. Wildfire detection and FRP
in  MODIS  and  VIIRS  data  were  compared  using  the
simultaneous observations in the overlapping orbits. The
experimental  result  shows  that  across  land  cover
categories, the VIIRS is stronger in wildfire detection and
high  fire  omission  of  MODIS  in  the  area's  lands  of  low-
biomass. The detection of false wildfire pixels was lower in
VIIRS  than  in  MODIS,  but  the  commission  errors  were
similar. Finally, the low-biomass areas of VIIRS show that
is effective for low-intensity wildfire areas, while for high-
intensity  wildfires  MODIS  accurately  retrieves  FRP with
dense smoke and solid atmospheric absorption.

In order to overcome the issue of ignoring small fires
by contextual method, a new weighted wildfire detection
algorithm  has  been  proposed  to  accurately  detect  small
fires  on  VIIRS  [10].  The  mid-infrared  channel  has  been
used  for  wildfire  identification  on  the  East  Asia  region.
The  crop  burning  wildfires  that  occur  in  East  Asia  have
been  detected  by  adaptive  threshold  using  bubble  sort
method based on the small fires radiation characteristics.
The  results  show  that  the  accuracy  value  of  53.85%  in
summer  and  73.53%  in  winter.  However,  the  missing
VIIRS  wildfire  points  have  to  be  analyzed.

Spatio-temporal  contextual  brightness  temperature
prediction  model  (STCM)  has  also  been  proposed  for
wildfire  detection.  San  Diego  in  Southern  California,
America  has  been  surveyed  for  this  research  study  and
experimental  results  show  that  RMSE  is  12.54%  lower
than that of contextual method and 9.12% lower than that
of Temporal-Contextual method. This method uses MODIS
products to detect wildfire detection, but it fails to discuss
small fires in the wildfire [11].

The  performance  of  MODIS  and  VIIRS  wildfire
detection  in  various  land  covers  has  been  evaluated  in
Turkey  on  the  fire  data  from  2015  and  2019  [12].  The
VIIRS  achieves  accuracy  from  1.3%  to  25.6%  for  five
various  land  cover  types  like  herbaceous  vegetation,
croplands,  closed  and  open  forests  and  shrublands.
However,  MODIS  and  VIIRS  have  limitations  of  wildfire
detections especially less than 10 ha.

The wildfire detection in the Kayamaki Wildlife study
area  has  also  been  sureveyed  using  contextual  based
algorithms.  This  method  analyzed  various  contextual
based  algorithms  like  IGBP,  Giglio,  Extended,  Dynamic,
and  Giglio  and  Extended  on  MODIS  data  and  IGBP
algorithm detects 86% wildfire with a 14% error rate. The
accuracy  can  be  improved  further  for  the  better
performance.

The  statistical  data  of  the  surrounding  areas  has
mostly  influenced  the  use  of  contextual  approaches  in
wildfire  detection.  Nevertheless,  the  threshold  may  vary
depending on the type of land cover, the seasons, and the
climate. The performance of the wildfire detection system
is  impacted  by  clouds  and  thick  smoke,  making  it
susceptible  to  omissions  and  false  positives.

2.2.  Machine  Learning  based  Wildfire  Detection
System

Nowadays,  Machine  Learning  (ML)  techniques  are
often  useful  for  finding  relationships,  detecting  and
predicting  wildfire  growth.  Using  ML  algorithms  for
detecting,  rapid  monitoring  of  active  fires,  and  early
prediction  of  active  fires  could  help  the  current  wildfire
detection system for further improvement [14].

Muhammad  et  al.  [15]  proposed  a  CNN  to  produce
appropriate images of  the fire using surveillance videos.
Still, these methods give less performance for huge area
wildfire detection. Ba et al. [16] proposed a SmokeNet to
improve the scene classification by combining the space
and  channel  attention  direction  into  CNN.  The  experi-

𝐹𝑅𝑃 =  
𝜎∗𝐴𝑓𝑝

𝑎∗𝜏4
(𝐿4𝑓 −  𝐿4𝑏)𝑀𝑊  
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mental  results  indicate  the  proposed  method  classifies
smoke scenes based on MODIS data. Gargiulo et al. [17]
designed  the  data  fusion  method  on  CNN  for  wildfire
detection  of  Sentinel-2  images.  The  precision  and  recall
rate  of  the  proposed  method  is  84.14%  and  56.42%
respectively. In this method, the weights of the CNN have
fine-tuned based on the geographic study area (Vesuvius,
Italy).

Pinto  et  al.  [18]  utilized  the  U-net  architecture  with
Long Short-Term Memory (LSTMs) and CNN in VIIRS 750
m bands data. This model uses VIIRS 750 m Red, middle-
infrared (MIR), near-infrared (NIR) bands with VIIRS 375
m active fires for training the model. The authors studied
regions  of  Brazil,  California,  Portugal,  Australia  and
Mozambique  with  accuracy  of  90.6%.  Additionally,
Bushnaq et al. [19] used Unmanned Aerial Vehicle (UAV)
images or videos to detect wildfires.  Rashkovetsky et al.
[20] investigated fire-affected areas from satellite image of
the infrared, visible and microwave domains. CNN based
U Net architecture has been considered with multisensory
data  (Sentinel-1,  Sentinel-2,  Sentinel-3  and  MODIS)  for
detecting  wildfires.  Combination  of  Sentinel-2  and
Sentinel-3  data  achieved  highest  accuracy  of  96%  in
cloudy  condition.

Khan,  Somaiya,  and  Ali  Khan  [21]  demonstrated  the
FFireNet for discriminating fire and non-fire images using
MobileNetV2 model. The experimental results show that,
99.47% of recall, 98.42% of accuracy, 1.58% of error rate
and  97.42%  of  precision  for  the  dataset  generated  by
intelligence surveillance system. Ahmed S. Almasoud [22].
combined  DL  with  Computer  Vision  technology  for
detecting  and  monitoring  wildfires  using  IWFFDA-DL
model  (Intelligent  Wild  Forest  Fire  Detection  and
Alarming  system  DL).  CNN  with  BLSTM  (Bidirectional
Long Short Term Memory) for detecting fires and bacterial
foraging optimization (BFO) algorithm has been used for
enhancing the detection performance. The result analysis
showed  that  the  precision  of  97.88%,  recall  of  99.46%,
accuracy of 99.56%, F-score of 98.65% and MAE of 1.36%
with globally collected fire dataset with condition of smoke
less  than  50  dB/m,  normal  fire  status,  heat  value  is  less
than 55°C and flame less than 180 μm.

Abdusalomov et al. [23] proposed an Detectron2 Model
with  precision  of  99.3%  for  the  large  custom  dataset  to
address  the  challenges  of  day  and  night  fire,  light  and
shadows in the images. Thangavel et al. [24] studied one
dimensional CNN using PRISMA hyperspectral imagery to
detect wildfires in Australian region and accuracy of the
system achieved 97.83% for the validation dataset.

The determination of fire incidents and hotspot actions
within the four national  parks in  Thailand has also been
studied using MODIS data. This paper suggests the early
detection  of  forest  and  land  fires  through  the
implementation  of  Artificial  Intelligence  (AI)  [25].
However,  this  study  aimed  to  analyze  and  monitor  the
effective wildfire detection system.

Priya et al. [26] demonstrated the use of ML to detect
vegetation  changes  and  evaluate  recovery  using  VIIRS

data  based  on  post-fire  satellite  imagery  with  a  training
error of 0.075.

There are still certain unresolved research issues from
the talks above. The literature review revealed a research
gap  in  contextual  techniques,  where  the  threshold  may
change  depending  on  the  kind  of  land  cover  and  the
various  climate  and  seasonal  factors.  As  a  result,  this
approach is easily affected by clouds and dense smoke and
is susceptible to omissions and false positives. Since ML
based  techniques  have  significant  adaptability,  learning
capacity, and superior portability, they offer high accuracy
and  minimal  false  alarms  [27].  It  is  still  difficult  to
accurately  detect  wildfires,  and  current  techniques  for
doing  so  with  remote  sensing  sensor  data  need  to  be
improved  [28].

3. METHOD

3.1. Proposed Wildfiredetect CNN Model
The steps for detecting wildfire pixels using VIIRS data

are shown in Fig. (1).

Fig. (1). Procedure for detecting wildfires using VIIRS data.

Wildfire  detection  algorithm  has  the  following  major
steps:

3.1.1. Data Collection
VIIRS data is gathered from sensors aboard satellites.

3.1.2. Data Screening
Unwanted  pixels,  such  as  those  representing  water

bodies  or  stripes,  are  filtered  out.

3.1.3. Thermal Anomaly Identification
Candidate  thermal  anomaly  pixels  are  identified  by

comparing surrounding pixels that might indicate a fire.

3.1.4. Fire Pixel Detection
Potential  fire  pixels  are  detected  using  specialized

wildfire  detection  algorithms.
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Fig. (2). Workflow of wildfiredetect CNN model.

Fig. (3). Wildfiredetect CNN model framework.

Wildfiredetect CNN model is proposed to improve the
accuracy  of  wildfire  detection  using  VIIRS  data.  When
compared  to  contextual  methods,  VIIRS  data  can  easily
eliminate false positives and omission errors and give high

resolution for the easy detection of fire points.
Fig. (2) shows the workflow of the Wildfiredetect CNN

model.  From  fire  spot  location  data  from  VIIRS  fire
product  data,  the  position  and  time  of  the  data  is  taken
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and a grid of 5 × 5 sizes is formed at the centre of each
pixel. Surrounding information of the pixels is calculated
by the average and standard deviation of each grid band.
In the training data set, the 1:2 ratio of fire and non-fire
training points were considered. The characteristics of the
fires  were  learned  by  the  network  fully  and  classified
correctly according to the data. In this study, data of fire
and non-fire spots are randomly added to the training set
and 15% is considered as the validation set for testing the
accuracy. The algorithm has a feature extraction method
and a classification method. The feature extraction method
extracts features from the input data and fully connected
layer output the spot is a fire or non-fire.

Fig.  (3)  shows  the  proposed  Wildfiredetect  CNN
model.  The  proposed  model  consists  of  5  convolutional
layers,  5  Maxpool  layers  and 2  fully  connected layers  to
extract features. First convolution layer has 96 kernels of
size  (11  ×  11  ×  3)  and  a  stride  of  4  pixels  followed  by
Maxpool  layer  to  reduce  data’s  complexity,  second
convolution layer has the 256 kernels of size (5 × 5 × 64)
with a stride of 2 followed by second Maxpool layer, third
convolution  layer  has  384  kernels  of  size  (3  ×  3  ×  256)

without  a  pooling  procedure  and  the  rest  of  the
convolution layers use filters with kernels of 384 and 256,
respectively with a stride of 1. The pooling layer uses 3×3
filters.  Finally,  2  fully  connected  layers  and  the  output
layer has Softmax function to distinguish fire/non-fire. In
addition to achieving non-linearity in neural networks, the
variation  of  ReLu  is  the  leaky  ReLu  activation  function
used, which introduces a small positive slope for negative
inputs  for  addressing  the  problem  of  “dead  neurons”  in
ReLu activation function.

4. STUDY AREA
Tamil  Nadu  is  the  southernmost  portion  of  India.  A

geographical area of Tamil Nadu is 1,30,060 sq km. This
state ranges are 8°05'N to 13°35'N latitude and 76°15'E
to 80°20'E longitude.

The state forest area (22,877 sq km) is classified into
protected forest (1,782 sq km), reserved forest (20,293 sq
km) and unclassed forests (802 sq km). According to forest
canopy  density  classes,  3,605.49  sq  km  has  very  dense
forest, 11,029.55 sq km has moderately dense forest and
11,728.98 sq km has open forest. The topographic map of
Tamil Nadu is shown in Fig. (4).

Fig. (4). Topographic map of tamil nadu.
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State  Forest  Department  receives  Near  Real-Time
(NRT)  active  wildfire  data  from  Fire  Information  for
Resource  Management  System  (FIRMS)  in  less  than  3
hours of satellite overpass from VIIRS. The data includes
centre  of  pixel  geo-coordinates,  date,  satellite  overpass
time, satellite name etc., for the wildfire hotspots. Active
fire detection provides the centre of a 1 km pixel pointed
as  one  or  more  fires  in  VIIRS  375m  pixel.  State  forest
department  identifies  the  forest  division  and  then
communicates it to the concerned District Forest Officer
for necessary action.

In India, 52,785 active fires were detected by MODIS
and  3,45,989  active  fires  were  detected  by  VIIRS  in  the
year 2020-2021. Tamil Nadu state reports 202 active fires
by  MODIS  and  1220  active  fires  by  VIIRS  in  the  year
2020-2021. Daily VIIRS 375 m data fire dataset has been
used  to  understand  the  study  area,  which  was  collected
from NASA (FIRMS) website (https://earthdata.nasa.gov)
[29]  for  the  period  2012  to  2020.  This  research  study
focuses on a wildfire detection system using the proposed
Wildfiredetect  CNN  model  in  VIIRS  Landsat  8  satellite
imageries data, to fill this research area gap.

5. RESULT AND DISCUSSION
In this study, the DL framework Pytorch1.3 was used.

The active fire locations of India have been obtained from
Landsat-8  datasets.  In  this  research  1000  samples  have
been  created  with  256  ×256  pixels  for  600  training
samples  (60%),  300  testing  samples  (30%)  and  100
validating  samples  (10%).  The  experiments  were
performed on 8 GB of RAM, Intel Core i5-8300H CPU and
NVIDIA  GeForce  GTX  1060.  The  Wildfiredetect  CNN
model has a parameter value of 100 epoch level, batch size
of 100 with 10-3  learning rate. The parameter settings of
the  Wildfiredetect  CNN  model  for  the  study  area  are
shown  in  Table  3.  The  Wildfiredetect  CNN  model  is
trained  though  Adaptive  Moment  Estimation  (Adam)
optimizer  [30]  using  back  propagation  and  the  weights
were initialized by Golorot initializer [31].
Table 3. Parameter setting of the wildfiredetect CNN
model for the study area.

Parameter Value

Training Backpropagation
Initial weights Golorot initializer

Batch size 100
Number of Epochs 50

Learning rate 10-3

Activation function of hidden layer Leaky Relu
Training samples 600(60%)
Testing samples 300(30%)

Validating samples 100(10%)

5.1. Evaluation Metrics
The  performance  metrics  like  Recall  Rate  (Rr),

Precision Rate (Pr), Commission Error (Ce), F-measure (Fm)
Accuracy (AC) and Omission Error (Oe) were considered to

test the proposed Wildfiredetect CNN model performance.
Precision  Rate  (Pr)  declares  that  the  truly  predicted  fire
spots of this model and is calculated by using Eq. (2).

(2)

TPF denotes correctly classified fire spots, TNF denotes
false  fire  spots,  FPF  denotes  pixels  misclassified  as  fire
spots,  FNF  represents  inaccurately  classified  as  non-fire
spots.  If  the  reliability  of  the  predicted  model  is  higher,
then the PR value is higher.

The Ce denotes the number of the predicted fire spots
is wrong. The higher Ce value shows the wrong fire spots
recognized  by  the  model  and  is  calculated  by  using  Eq.
(3).

(3)

The Rr defines the fire spots correctly identified in the
model. If the Rr value is greater, the lesser the fire spots
skipped and is calculated by using Eq. (4).

(4)

The Oe  shows that the original data fire spot and the
extent to it is missed out. The higher the Oe value model,
the  lower  the  comprehensiveness.  The  Oe  value  is
calculated  by  using  Eq.  (5).

(5)

The AC is calculated by the ratio of correct predictions
to the model predictions and is calculated by using Eq. (6).

(6)

Fm value evaluates the performance of the model and is
calculated by using Eq. (7).

(7)

5.2. Experiment Result and Analysis
Fig.  (5)  shows  the  result  of  the  proposed

Wildfiredetect CNN model in the Tamil Nadu state region.
The proposed Wildfiredetect CNN model is compared with
two types of algorithms such as contextual algorithms and
ML based algorithms. The existing method based on these
algorithms has been used for testing the proposed method
efficiency.  Table  4  shows  the  comparison  of  an  existing
method such as contextual and ML based algorithms with
the proposed Wildfiredetect CNN model.

From  Table  4,  it  is  observed  that  the  contextual
algorithms and an improved Contextual algorithm achieve
low  accuracies  compared  to  the  ML  based  algorithms.
These  methods  have  shown  lower  performance  for
detecting active fires when compared to other methods for
the use of threshold methods to find the active fires in the

 𝑃𝑟 =  
𝑇𝑃𝐹

𝑇𝑃𝐹+𝐹𝑃𝐹
 × 100  

𝐶𝑒 =  
𝐹𝑃𝐹

𝑇𝑃𝐹+𝐹𝑃𝐹
 × 100  

𝑅𝑟 =  
𝑇𝑃𝐹

𝑇𝑃𝐹+𝐹𝑁𝐹
 × 100  

𝑂𝑒 =  
𝐹𝑁𝐹

𝑇𝑃𝐹+𝐹𝑁𝐹
 

𝐴𝐶 =  
𝑇𝑃𝐹 +𝑇𝑁𝐹

𝑇𝑃𝐹+𝐹𝑃𝐹+𝑇𝑁𝐹+ 𝐹𝑁𝐹
 × 100   

𝐹𝑚 =  
2×𝑅𝑟 ×𝑃𝑟

𝑅𝑟+ 𝑃𝑟

https://earthdata.nasa.gov
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dataset. The proposed Wildfiredetect CNN model achieves
26.17% higher accuracy rate than the improved contextual
algorithm.  Also  compared  to  other  ML  algorithms,

proposed Wildfiredetect CNN model gives higher accuracy
in wildfire detection system and it is shown in Fig. (6).

Fig. (5). Result of proposed model for sample images.

Fig. (6). Accuracy comparison of wildfire detection algorithms.
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Table 4. Comparison of the proposed wildfiredetect CNN model with existing algorithms.

Method Accuracy (%)

Contextual algorithms
VIFDAHL [6] 95

Optimised I M Band algorithm
[7] 96

Contextual algorithm
[9] 91

Improved Contextual algorithm [10] 73.53
Contexual algorithm

[12] 92.3

ML algorithms
CNN+ LSTM + U-Net

[18] 99

CNN+ Super resolution
[17] 97.4

Proposed Wildfiredetect CNN model 99.7

Table 5. Performance metrics result of the proposed wildfiredetect CNN model.

Method TPF TNF FPF FNF Pr (%) Rr (%) Ce (%) Oe (%) AC (%) Fm (%)

Proposed Wildfire CNN Model 977 18 2 3 99.79 99.69 0.2 0.3 99.7 99.73

The performance metrics like Pr, Rr, Ce, Oe, AC and Fm

were used as the indicators of the proposed Wildfiredetect
CNN  model  performance  and  the  results  are  shown  in

Table 5. The proposed Wildfiredetect CNN model achieves
the highest accuracy score of 99.7% with a lower omission
error of 0.3%.

Fig. (7). Confusion matrix of the proposed model for the testing data.

Fire or No Fire Confusion Matrix - Test Data
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Table 6. Performance metrics result of the proposed wildfiredetect CNN model for testing data.

Method TPF TNF FPF FNF Pr (%) Rr (%) Ce (%) Oe (%) AC (%) Fm (%)

Proposed Wildfire CNN Model 277 18 4 1 98.5 99.64 1.42 0.35 98.3 99.1

Confusion  matrix  gives  the  predictive  analysis  of  the
wildfire  dataset  classification  for  the  study  area.  The
proposed  model  shows  good  results  for  the  wildfire
classification problem. The proposed model classifies the
fire  spot  with  99.79%  Pr,  99.69%  Rr,  0.2%  Ce,  0.3%  Oe,
99.7% AC and 99.73% Fm values, respectively for training
data.  Confusion  matrix  of  the  proposed  model  for  the
testing data is shown in Fig. (7). The proposed results in
227 TPF and 18 TNF while the wrong classified active fire
spots are 4 FPF and 1 FNF, respectively for testing data as
shown in Table 6.

Fig.  (8)  depicts  the  training  and  validation  accuracy
analysis  of  proposed  model.  The  model  runs  for  100
epochs  and  the  accuracy  values  of  each  epoch  are
analyzed  for  the  training  and  validating  data  on  the
dataset.  The  experimental  results  show  that  the  highest
accuracy of 98.3% is achieved at 100 epochs.

5.3.  Experiment  Result  Analysis  on  Alaska  Forests
Dataset

In  this  section,  the  proposed  model  is  tested  with

Alaska  forest  datasets  to  prove  its  effectiveness  in
detecting  small  fires.

Coffield  et  al.  [32]  used  machine  learning  models  to
predict  the  small  fires  in  substantial  occurrence  of
wildfires in Alaska forests. Decision trees achieve higher
accuracy in detecting small  fires in the study area when
compared  to  other  machine  learning  models  such  as
Random  Forests  (RF),  K-Nearest  Neighbours  (KNN),
Gradient  Boosting  (GB)  and  Multi-Layer  Perceptrons
(MLP).  The  active  fire  data  was  collected  from  MODIS
sensor over the year 2001–2017 and it contains fire spots
from upto 1168. The Alaska dataset was considered to test
the  performance  of  the  Wildfiredetect  CNN  model.  The
proposed model achieves 99.4% accuracy which is higher
than the machine learning models such as RF, DT, KNN,
GB and MLP. The proposed model accuracy for small fires
in the Alaska forests are 45.3%, 43.6%, 48.7%, 45.4% and
47.6%  higher  than  RF,  KNN,  GB  and  MLP  models
respectively.  Fig.  (9)  depicts  the  overall  performance
evaluation  metrics  comparison  of  various  classification
models  with  the  proposed  model  for  the  Alaska  dataset
[33-40].

Fig. (8). Analysis of training and validation accuracy of proposed model.
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Fig. (9). Performance comparison of various models for alaska dataset.

In  this  research,  582  training  samples  (50%),  291
testing  samples  (25%)  and  291(25%)  validating  samples
(10%)  were  considered  to  prove  the  proposed  Wildfire
CNN model performance on Alaska dataset by considering
the  six  quality  indices  such  as  Pr,  Rr,  Ce,  Oe,  AC  and  Fm.
Table  7  shows  the  performance  comparison  of  the
proposed model with various existing ML algorithms. The
proposed  model  higher  performance  in  detecting  active
fire  spot  and  achieves  lower  error  rate  for  effective  fire
spot  detection.  Table  8  shows  that  the  performance
metrics  result  of  the  proposed  model  for  testing  data  in
Alaska  dataset.  The  proposed  model  achieves  99.2%  Pr,
100% Rr, 0.7% Ce, 0% Oe, 99.3% AC and 99.69% Fm values,
respectively.

Fig. (10) depicts the Confusion matrix of the proposed

model for the testing data in Alaska dataset. The proposed
model  results  in  279  TPF  and  10  TNF  while  the  wrong
classified  active  fire  spots  are  2  FPF  and  0  FNF,
respectively.

The experimental analysis provides the effectiveness of
the proposed model for detecting wildfires in the dataset.
The  proposed  model  also  demonstrates  that  accurately
detecting  small  fires  in  Alaska  forests  dataset  when
comparing  other  ML  algorithms.  Fig.  (11)  depicts  the
training and validation accuracy analysis of the proposed
model.  The model runs for 200 epochs and the accuracy
values  of  each  epoch  are  analyzed  for  the  both  training
and validating data on the Alaska dataset. The analysis on
epochs  shows  that,  at  200  epochs  the  highest  accuracy
value of 99.3% achieved.

Table 7. Comparative analysis of the proposed model with existing models for testing data in Alaska dataset.

Method Pr (%) Rr (%) Ce (%) Oe (%) AC (%) Fm (%)

RF 57.95 67.87 0.89 0.72 53.9 62.51
DT 75.34 69.45 0.86 0.82 55.6 72.28

KNN 60.61 64.34 0.81 0.88 50.5 62.41
GB 77.83 78.45 0.78 0.78 53.8 78.13

MLP 79.45 80.56 0.56 0.64 51.6 80
Proposed Wildfiredetect CNN Model 98.74 100 0.25 0 99.3 99.36

Table 8. Performance metrics result of the proposed model for testing data in Alaska dataset.

Method TPF TNF FPF FNF Pr (%) Rr (%) Ce (%) Oe (%) AC (%) Fm (%)

Proposed Wildfire CNN Model 279 10 2 0 99.2 100 0.7 0 99.3 99.69
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Fig. (10). Confusion matrix of the proposed model for the testing data in Alaska dataset.

Fig. (11). Training and validation accuracy analysis of proposed Wildfire CNN model in Alaska dataset.
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CONCLUSION
Determining  the  wildfire's  occurrence  accurately  is

difficult yet essential. The threshold fluctuates depending
on the research locations and climate change, making the
widely  used  contextual  technique  vulnerable  to  large
commission  and  omission  errors.  Very  few  studies  use
VIIRS data to apply ML techniques for wildfire detection.
This  paper  proposes  a  Wildfiredetect  CNN  for  wildfire
detection  using  VIIRS  data  that  is  effective  in  detecting
wildfires  while  taking  the  Tamil  Nadu  study  region  into
consideration.  To  estimate  the  effectiveness  of  the
proposed model, performance metrics like Pr, Rr, Ce, Oe, AC
and Fm were considered. The result of the proposed model
has  been  compared  with  the  contextual  method  and
demonstrates  that  the  proposed  model  achieves  the
highest  performance  metric  values  with  99.69%  recall
rate,  99.79%  precision  rate,  0.3%  omission  error,  0.2%
commission error, 99.73% F-measure and 99.7% accuracy
values for training data. The proposed Wildfiredetect CNN
model also achieves a 26.17% higher accuracy rate than
the  improved  contextual  algorithm.  The  proposed  model
detects wildfire superior to the existing algorithms and the
false  rate  also  significantly  decreased.  The  experiment
analysis on the Alaska forests dataset also proves that the
proposed  model  detects  small  fires  accurately  when
compared to existing ML algorithms like RF, KNN, GB and
MLP  and  shows  the  results  for  the  testing  data  with  a
100% recall rate, 99.2% precision rate, 0% omission error,
0.7%  commission  error,  99.69%  F-measure  and  99.3%
accuracy  values.  Ultimately,  more  research  remains
necessary  for  wildfire  detection  and  monitoring  systems
that combine ML algorithms with satellite remote sensing
technology.
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