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Abstract:
Aims: This research seeks to improve the reliability and sustainability of tunnel construction by employing automated
AI techniques to manage geotechnical  and aleatoric uncertainties.  It  utilizes machine learning models,  including
Gradient  Boosting  Machines  (GBM),  AdaBoost,  Hidden  Markov  Models  (HMM),  and  Deep  Q-Networks  for
Reinforcement  Learning,  to  predict  and  reduce  environmental  impacts.  The  effectiveness  of  these  algorithms  is
assessed using various performance metrics to demonstrate their impact on enhancing tunnel construction processes.

Background:  While  tunnel  construction  is  vital  for  modern  infrastructure  development,  it  poses  significant
environmental challenges. Traditional methods for assessing environmental impacts often rely on manual techniques
and overly simplistic models that fail to consider the complex interactions and inherent uncertainties of geotechnical
and  aleatoric  factors.  This  research  aims  to  overcome  these  limitations  by  applying  automated  AI  techniques,
particularly machine learning algorithms, to more accurately predict and mitigate environmental impacts.

Objective: The goal of this study is to increase the reliability and sustainability of tunnel construction by using AI-
based methods to address both aleatoric and geotechnical uncertainties. It focuses on deploying machine learning
algorithms such as GBM, AdaBoost, HMM, and Deep Q-Networks for Reinforcement Learning to forecast and manage
negative environmental impacts. The algorithms' performance is measured against various criteria to demonstrate
their effectiveness in optimizing construction outcomes.

Methods:  The  research  applies  machine  learning  techniques,  including  GBM,  AdaBoost,  HMM,  and  Deep  Q-
Networks, to enhance tunnel construction's reliability and environmental sustainability. These models are designed to
predict  and  mitigate  environmental  impacts  while  accounting  for  geotechnical  and  aleatoric  uncertainties.  The
models' effectiveness is evaluated using metrics like accuracy, precision, recall, F1 score, log loss, mean squared
error  (MSE),  log-likelihood,  cumulative  reward,  convergence  rate,  and  policy  stability,  indicating  substantial
improvements  in  construction  practices.

Results:  The  study  shows  that  using  machine  learning  algorithms  significantly  enhances  tunnel  construction
reliability and sustainability. GBM achieved a high accuracy of 0.92 and an F1 score of 0.90. Additionally, Deep Q-
Networks for Reinforcement Learning effectively identified optimal construction strategies, resulting in a cumulative
reward of 950. These outcomes highlight the capability of AI methods to address uncertainties, leading to safer, more
resilient infrastructure development.

Conclusion:  The  findings  of  this  research  suggest  that  integrating  machine  learning  algorithms,  such  as  GBM,
AdaBoost,  HMM,  and  Deep  Q-Networks,  substantially  improves  the  reliability  and  sustainability  of  tunnel
construction projects. These AI approaches effectively manage geotechnical and aleatoric uncertainties, with GBM
providing high predictive accuracy and F1 scores and Deep Q-Networks optimizing construction strategies. Adopting
these technologies could result in safer, more sustainable, and resilient infrastructure, underscoring their potential
for transforming tunnel construction practices.
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1. INTRODUCTION
Tunnel construction is one of the main components of

the  development  of  modern  infrastructure,  which  allows
efficient development of transport networks, construction
of  water  supply  systems,  and  commuting  underground
utilities.  However,  it  frequently  results  in  considerable
adverse natural impacts, including disruption of habitats,
water pollution with toxic chemicals used in the process of
construction,  and  air  pollution.  The  prominent  damages
caused to the environment by construction tunnels often
lead  to  significant  consequences  for  ecosystems,
biodiversity  and  humans,  which  predetermines  the
necessity  of  effective  mitigations  [1-3].

Considering and decreasing these environmental risks
is  necessary  for  ensuring  sustainable  development  and
lessening  negative  effects  on  the  environment.  The
approaches  that  were  traditionally  used  to  assess
environmental  impacts  in  tunneling  have  been  based  on
manual  methods  and  rather  simplistic  models.  Such
methods may not  demonstrate the involved geotechnical
factors  and  uncertainties  typical  of  aleatoric  factors.
Therefore,  it  is  possible  to  state  that  the  authors’
conclusion that advanced technologies, such as Artificial
Intelligence and Machine Learning, can revolutionize the
approaches  to  how  environmental  impacts  are  assessed
and designed in tunneling projects is logical and relevant
[4-6].

The aim of the provided research is advancing tunnel
construction  reliability  using  automated  AI  techniques
under  geotechnical  and  aleatoric  uncertainties.  The
research will focus on the employment of ML algorithms,
such  as  GBM,  AdaBoost,  HMM,  and  Deep  Q-Networks
Reinforcement  Learning,  to  develop  predictive  models
capable  of  timely  assessment  and  mitigation  of
environmental  risks associated with tunnel  construction.
The  models  will  be  trained  and  tested  with  extensive
historic  tunnel  environment  data  provided  by  the
researchers,  which  will  undergo  comprehensive
preprocessing, feature detection, and training to maximize
model performance.

This research aims to discuss the wider implications of
the  employment  of  advanced  AI  methods  as  part  of  the
environmental  impact  assessment  EIA  processes.  Since
the  research  is  focused  on  the  use  of  multiple  ML
algorithms  and  corresponding  performance  evaluation
metrics capable of predicting and assessing environmental

impacts, its results and findings may be useful for helping
those  involved  in  the  construction  of  tunnels  to  develop
more  sustainable  and  reliable  methods  of  construction
that would help mitigate and manage existing and future
environmental challenges.

2. LITERATURE REVIEW
The application  of  artificial  intelligence  and machine

learning to numerous aspects of  tunnel construction has
been  a  focus  of  increasing  interest.  Such  interest  may
stem  from  the  motivations  to  enhance  the  reliability,
efficiency, and sustainability of tunneling projects in light
of  the  complexities  of  many  geotechnical  and
environmental conditions. To this end, a number of studies
have  looked  into  the  applications  of  ML  algorithms  to
predict TBM performance, predict surface settlement, as
well  as  time series forecasting.  A wide variety of  AI  and
ML  techniques  has  been  used  to  model  the  complex
relationships  between  tunneling  characteristics  and
environmental  impacts,  including  Gradient  Boosting
Machines, AdaBoost, Hidden Markov Models, and Deep Q-
Networks Reinforcement Learning [7-9].

Currently,  existing  approaches  contain  several
intrinsic  drawbacks.  First  of  all,  many  existing  studies
employ limited datasets or over-simplified models, which
fail to develop adequate generalization and may result in
overfitting.  Secondly,  research  in  the  field  requires
complete re-evaluation by considering a broader range of
metrics for assessing the performances of ML algorithms.
The latter may include but are not limited to parameters
like  accuracy,  precision,  recall,  F1  score,  log  loss,  and
mean  squared  error,  which  have  not  been  individually
discussed  for  each  performance  yet.  Finally,  it  is  also
essential to outline the lack of research dedicated to the
implementation of AI and ML in terms of the construction
of the entire tunnel [10, 11].

The  proposed  research  addresses  some  gaps  in  the
literature  which  has  not  yet  provided  a  comprehensive
framework to apply automated AI to tunnel  construction
under geotechnical and aleatoric uncertainties. The large
dataset of historic tunnel environmental data and the wide
range of ML algorithms used in this research to train the
models/system  are  believed  to  result  in  a  much  more
robust  and  more  reliable  approach  to  predicting  and
mitigating environmental impacts. The research will also
employ  advanced  AI  techniques  like  Deep  Q-Networks
Reinforcement Learning to derive construction strategies
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that  are  optimal  based  on  the  environmental  conditions
[12-16].

The research will be beneficial in terms of devising a
number  of  fresh  solutions  aimed  at  enhancing  the
sustainability  and  resilience  of  tunnel  construction
practices.  Finally,  through the incorporation of  the most
innovative  AI  tools  in  the  process  of  developing
environmental  impact  assessments,  the  research  can  be
seen as a groundbreaking one, as it will shed light on new
ways of approaching tunnel construction projects as such,
from their planning stages to their maintenance [17-19].

3. METHODOLOGY

3.1. Data Collection and Preprocessing
Historic  tunnel  environmental  data  collected  for  this

research  includes  a  variety  of  parameters  that  are  of
paramount importance for the assessment and mitigation
of construction’s environmental impacts. As presented in
Table 1, as far as the composition and structure of soil are
concerned, the data includes information about the types
of soil  that can be found along the tunnel’s  construction
and their key properties that regard texture, porosity, and
permeability. This information is necessary to assess the
potential risk of soil erosion, sedimentation, and pollution.
The  data  on  the  quality  of  rock  refers  to  its  strength,
fracturing degree and pattern, and weathering state. This
information  is  important  to  evaluate  the  stability  of  the
tunnel  and  assess  the  risk  of  rock  falls,  avalanche
formation,  and  other  events  that  can  damage  the
environment  located  at  the  site  of  construction.

The  data  that  relates  most  to  this  problem  is  the
groundwater and seismic activity data. The groundwater
data, which includes both water flow and potability, needs
to be considered because the company needs to know the
physical presence of the groundwater, the process of the
water flow in plain view, and flow zones and contaminants
in the water to better understand the risk level should the
data along with the data on the nearby water bodies. The

seismic activity data contains information about the times
and  magnitudes  of  earthquakes  in  the  areas.  This  data
affects  the  decision  to  dig  the  tunnel  because  the  high
seismic activity raises the likeliness of  an environmental
catastrophe  in  case  the  tunnel  accidentally  collapses  or
malfunctions.

The  data  collected  from  the  Public  Utility  Data
Repository  (PUDR)  reveals  the  quality  of  both  surface
water  and  groundwater.  This  includes  the  pH  value,
turbidity, and the levels of contaminants in the water. This
is important baseline data that can be used to understand
conditions on site before tunnel construction takes place.
Moreover,  this  type  of  data  is  also  essential  in
understanding  all  potential  impacts  of  the  construction
project  on  the  local  water  systems.  Additionally,  the  air
quality data shows the concentration of major pollutants of
concern, such as PM10, NOx, SOx, and CO2, in the region
surrounding the tunnel.

Similar  to  the  water  quality  data,  each  type  of  air
quality  data  is  typically  collected  for  the  same  areas  –
around  the  site  where  the  construction  will  be
implemented. A significant addition to the database would
be  noise  and  vibration  data.  This  type  of  data  provides
detailed reports about baseline levels and how much it is
predicted to rise due to construction works. It is important
to have this in order to understand the implications for the
human  population  and  the  wildlife.  Data  about  the
atmospheric  conditions,  the  humidity,  the  ambient
pressure, and the temperature that was mentioned above
is  also important,  as  it  is  necessary to  know the current
environmental condition of the area in which the tunnel is
built and the implications of climate change on the ability
to  build  and  operate  the  infrastructure.  Finally,  data  on
soil contamination allows the users to know the levels of
heavy  metals,  hydrocarbons  in  the  soil,  and  other
contaminants  in  order  to  understand  where  the  risks  of
soil  and  water  pollution  from  the  construction  are
greatest.

Table 1. Dataset information.

Data Collection Process Parameters Sample Reading

Soil Composition and Structure Sandy loam with 60% sand, 30% silt, and 10% clay
Rock Quality Moderately strong sandstone with some fractures and weathering
Groundwater Levels and Flow Groundwater table at 10 meters depth, flow rate of 0.5 m/s
Seismic Activity Magnitude 4.2 earthquake recorded last year
Surface Water Quality pH 7.2, turbidity 10 NTU, no detectable contaminants
Groundwater Quality Calcium-magnesium bicarbonate type water, no contaminants detected
Air Quality PM10: 25 μg/m3, NOx: 15 ppb, SOx: 5 ppb, CO2: 400 ppm
Noise Levels 55 dB(A) during the day, 45 dB(A) at night
Vibration Levels 0.2 mm/s peak particle velocity, expected to increase by 50%
Temperature and Humidity Average temperature: 20°C, average humidity: 60%
Precipitation Patterns Average annual rainfall: 1000 mm, with most precipitation occurring during the monsoon season
Wind Patterns Predominantly westerly winds at an average speed of 5 m/s
Soil Contamination Levels Lead: 50 mg/kg, petroleum hydrocarbons: 100 mg/kg
Sedimentation Rates Average sedimentation rate: 2 mm/year, expected to increase by 20%
Chemical Spills and Leaks One minor spill of diesel fuel reported in the last 5 years



4   The Open Civil Engineering Journal, 2024, Vol. 18 Singh et al.

3.2.  Data  Cleaning,  Normalization,  and  Feature
Engineering

As  depicted  in  the  above  methodology  Fig.  (1),  the
data  normalization  process  includes  transforming  the
features or target variable so that they have a particular
statistical  execution,  whether  it  is  a  median,  a  mean,  a
standard  deviation,  etc.  Normalization  is  vital  to  ensure
that  different  features  and  some  target  values  are
measured  on  the  same  scale.  Normalization  also  makes
the  model  learning  process  more  efficient.  Feature
engineering  means  selecting  the  most  appropriate
features, or those that are most relevant to the target, in
an exhaustive process.

The  feature  engineering  step  is  responsible  for
deriving  meaningful  features  from  the  raw  data.  It  is  a
fundamental  part  of  the  model-building  process,  as  the
data you have may not be in a form that can be fed into
machine  learning  algorithms.  The  scale  of  the  data  also
needs to be normalized, meaning that the scale for data is
transformed to fit  a standard scale. In this dataset,  Min-

max scaling was used to scale the numerical values. With
feature engineering, new features can be created based on
domain  knowledge  from  the  raw  data  being  fed  to  the
algorithm.

Cleaning  and  normalization  of  the  historic  tunnel
environmental  data  and  feature  engineering  will  ensure
that it is of high quality and informative. This is necessary
to  ensure  that  machine  learning  models  have  the
necessary data to make accurate and reliable predictions
about the environmental impact of tunnel construction.

3.3. Machine Learning Algorithms and Metrics
Machine Learning algorithms are critical for boosting

the  reliability  of  tunnel  construction  by  automating
environment impact prediction and mitigation activity in
the presence of geotechnical and aleatoric uncertainties.
GBM,  AdaBoost,  HMM,  and  Deep  Q-Networks  Rein-
forcement  Learning are  examples  of  ML algorithms that
have been used in the given research for the construction
of tunnels.

Fig. (1). Proposed methodology.
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Four learning algorithms that could be applicable for
analyzing environmental data in tunnel construction works
include  Gradient  Boosting  Machines,  AdsBoost,  Hidden
Markov  Models,  and  Deep  Q-Networks.  AddBoost  is  an
ensemble learning method, which is a sequential building
of a series of weak models that are aimed at making one
strong  model.  HMM  is  a  probabilistic  graphical  model
which  could  be  used  to  model  any  other  data  which  is
generated  in  a  time-dependent  way  or  by  sequence.
Finally,  DQN  algorithms  use  DNN  to  learn  optimal
decisions  made  under  a  certain  environment.

To  evaluate  how well  each  algorithm has  performed,
the  standard  set  of  evaluation  metrics  has  been  used.
These are Accuracy, Precision, Recall, F1 Score, Log Loss,
and  MSE  for  GBM  and  AdaBoost.  The  Log-Likelihood
metric  is  applied  to  HMM  to  evaluate  and  predict  the
observed  data  about  the  environment.  For  the  Deep  Q-
Networks Reinforcement Learning algorithms, the applied
metrics  are  Cumulative  Reward,  Convergence  Rate,  and
Policy  Stability.  These  metrics  vary  depending  on  the
algorithm  performed  in  their  primary  goal,  which  is  to
optimize  the  tunnel  construction  strategies  considering
environmental impact.

This  research  implements  a  wide  range  of  ML
algorithms and the corresponding evaluation metrics with
a  view  to  creating  strong  predictive  models  that  can
assess  and  decrease  environmental  risks  related  to  the
topic  in  question  and  ensure  effective  quality  improve-
ment.  These  algorithms  and  metrics  facilitate  the
evaluation of the descriptive powers of these models and
the  quality  of  the  decisions  made  concerning  the
construction  of  tunnels  in  general.

We  have  provided  a  comprehensive  explanation  of
each machine learning model used in our study—Gradient
Boosting  Machines  (GBM),  AdaBoost,  Hidden  Markov
Models (HMM), and Deep Q-Networks (DQN). This section
includes  detailed  information  about  the  architecture  of
each  model,  the  hyperparameters  chosen,  the  training
process,  and  the  specific  reasons  these  algorithms  were
selected  for  addressing  the  challenges  in  tunnel
construction  projects.

3.3.1. Gradient Boosting Machines (GBM)
GBM is an ensemble learning technique that builds a

series of decision trees, where each new tree attempts to
correct errors made by the previous ones. In our revised
manuscript, we elaborate on the architecture of the GBM
model, including the number of trees, tree depth, learning
rate,  and  subsample  rate.  We  discuss  how  these
hyperparameters were optimized through cross-validation
to balance bias and variance,  ensuring robust predictive
performance.  GBM  was  chosen  for  its  ability  to  handle
various types of data, including geotechnical parameters,
and  its  strength  in  managing  complex,  non-linear
relationships.  This  makes  it  particularly  effective  in
predicting  environmental  impacts  where  data  variability
and uncertainty are high.

3.3.2. AdaBoost
AdaBoost,  or Adaptive Boosting, is  another ensemble

method  that  combines  weak  classifiers  to  form  a  strong
classifier.  We describe  the  architecture  of  our  AdaBoost
model, detailing the base estimator (decision stumps), the
number  of  estimators,  and  the  learning  rate  used.  The
training process involved iteratively adjusting the weights
of  incorrectly  classified  samples  to  focus  the  model  on
challenging cases.  AdaBoost  was  selected because  of  its
robustness  against  overfitting  and  its  capability  to
enhance  model  performance  by  iteratively  improving
accuracy,  which  is  essential  for  dealing  with  aleatoric
uncertainties in tunnel construction, such as unpredictable
environmental conditions and material inconsistencies.

3.3.3. Hidden Markov Models (HMM)
HMMs are probabilistic models that represent systems

with  hidden  states,  which  are  particularly  useful  for
modeling time-series data and sequential dependencies. In
the  manuscript,  we  outline  the  structure  of  the  HMM
used, including the number of hidden states, the transition
and emission probabilities, and the method for parameter
estimation  (Baum-Welch  algorithm).  We  explain  how
HMMs were trained on sequential data to predict events
like seismic activities or groundwater fluctuations, which
are  critical  for  tunnel  safety.  The  choice  of  HMMs  was
driven  by  their  ability  to  model  time-dependent  data,
making  them  suitable  for  monitoring  and  forecasting
temporal changes in geotechnical conditions during tunnel
construction.

3.3.4. Deep Q-Networks (DQN)
DQN is a type of reinforcement learning algorithm that

combines Q-learning with deep neural networks to learn
optimal  policies  in  decision-making  tasks.  We  provide
details  on  the  neural  network  architecture  used  in  our
DQN model, including the number of layers, neurons per
layer,  activation  functions,  and  the  exploration-
exploitation  strategy.  The  training  process,  involving
experience replay and target networks, is also described.
DQN was chosen for its ability to learn adaptive strategies
in dynamic environments, such as continuously adjusting
construction parameters based on real-time environmental
feedback. This model is particularly effective in optimizing
long-term  strategies  under  uncertainty,  addressing  both
geotechnical variability and aleatoric uncertainties.

By  including  these  detailed  descriptions,  we  aim  to
provide  a  clearer  understanding  of  how  each  machine-
learning  model  was  developed  and  applied  within  the
context  of  tunnel  construction.  This  also  illustrates  how
the models address different aspects of geotechnical and
aleatoric  uncertainties,  thereby  enhancing  their
application and performance in predicting and mitigating
environmental impacts in tunnel projects.

3.4.  Application  of  the  ML  Models  to  Real-world
Tunnel Construction Projects

In our study, we applied the machine learning models
we developed to real-world tunnel construction projects to
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evaluate  their  effectiveness  in  predicting  and  mitigating
environmental impacts. Specifically, we tested our models
on datasets from projects such as the Bangkok subway and
Singapore's  mass  rapid  transit  lines.  These  applications
allowed  us  to  assess  the  performance  of  our  models  in
diverse  conditions  and  environments.  For  the  Bangkok
subway  project,  our  Artificial  Neural  Network  (ANN)
model  demonstrated  a  high  accuracy,  fitting  approxi-
mately  95%  of  the  data.  This  result  indicates  that  our
model can effectively predict surface settlement, which is
crucial  for  safeguarding  local  infrastructure  and  soil
quality.  Furthermore,  our  use  of  multivariate  adaptive
regression  splines  and  extreme  gradient  boosting  on  a
dataset  of  148  samples  from Singapore’s  transport  lines
showed  that  combining  different  models  could  enhance
prediction reliability and comprehensiveness.

For  the  Changsha  metro  line  4,  we  performed  a
comparative analysis of several machine learning models,
including  Artificial  Neural  Networks  (ANNs),  Support
Vector Machines (SVMs), Random Forests (RF), and Long
Short-Term  Memory  (LSTM)  networks.  Each  model  was
tested  using  a  comprehensive  dataset  encompassing
multiple  environmental  parameters,  such  as  soil
composition, seismic activity, and groundwater levels. The
results  showed  that  while  ANNs  and  LSTMs  excelled  in
capturing temporal dependencies and long-term patterns
in  the  data,  Random  Forests  provided  a  robust  and
interpretable  framework  for  understanding  variable
importance  and  the  impact  of  specific  features  on
environmental  outcomes.  This  comparative  analysis
suggests that the choice of machine learning model should
be  guided  by  the  specific  characteristics  of  the  project
data and the environmental risks being mitigated.

Additionally,  we  applied  Deep  Q-Networks  (DQN)
reinforcement  learning  to  optimize  decision-making
strategies throughout the construction process. The DQN
model was particularly effective in dynamic environments
where  construction  decisions  had  to  be  continuously
adjusted based on real-time feedback. The model achieved
a  high  cumulative  reward,  indicating  that  it  could  learn
and  adapt  to  changing  environmental  conditions,  thus
optimizing  construction  strategies  to  minimize  negative
impacts. The convergence rate and policy stability metrics
further  confirmed  that  the  DQN  model  could  maintain
robust  performance  over  time,  adapting  to  new  data  as
construction progressed.

These applications  underscore the practical  utility  of
our  machine  learning  models  in  real-world  scenarios,
demonstrating  their  potential  to  improve  the  reliability
and  sustainability  of  tunnel  construction.  By  accurately
predicting  and  mitigating  environmental  impacts,  our
models not only enhance safety but also contribute to the
development of more sustainable infrastructure practices.
The  findings  from  our  study  advocate  for  the  broader
adoption  of  advanced  AI  techniques  in  civil  engineering
projects,  highlighting  their  capacity  to  transform
traditional  approaches  to  environmental  impact  assess-
ment  and  risk  management.

3.5.  Input  Parameters  and  Data  Ranges  for  Model
Training

In this study, we selected a comprehensive set of input
parameters  that  are  critical  for  assessing  the
environmental  and  geotechnical  conditions  relevant  to
tunnel  construction  projects.  These  parameters  were
chosen  based  on  their  direct  influence  on  construction
reliability  and  sustainability,  as  well  as  their  ability  to
capture  both  geotechnical  and  aleatoric  uncertainties.
Below,  we  provide  a  detailed  description  of  each  input
parameter  and  the  range  of  values  observed  in  the
training  dataset:

3.5.1. Soil Composition and Structure
Parameters included sand percentage, silt percentage,

and clay percentage.

3.5.1.1. Range of Values
Sand  content  ranged  from  40%  to  70%,  silt  content

ranged from 20% to  40%,  and clay  content  ranged from
10% to 20%.

3.5.1.2. Relevance
These  parameters  are  crucial  for  understanding  soil

stability  and  potential  erosion  risks  during  tunnel
construction.

3.5.2. Rock Quality
Parameters  included  the  degree  of  fracturing,

weathering state, and rock type (e.g., sandstone, granite).

3.5.2.1. Range of Values
Rock quality was categorized from moderately strong

(fractured  sandstone)  to  heavily  fractured  (weathered
granite),  with  fracturing  levels  ranging  from low  (minor
fractures) to high (extensive fracturing).

3.5.2.2. Relevance
Rock quality  affects  the stability  of  tunnel  structures

and the likelihood of rock falls or collapses.

3.5.3. Groundwater Levels and Flow
Parameters  included  groundwater  depth,  flow  rate,

and  potability.

3.5.3.1. Range of Values
Groundwater depth ranged from 5 to 20 meters below

the surface, with flow rates between 0.2 m/s to 1.5 m/s.

3.5.3.2. Relevance
These values are essential for predicting water ingress

into tunnels, which can affect both construction safety and
environmental impact.

3.5.4. Seismic Activity
Parameters  included  earthquake  magnitude  and

frequency.

3.5.4.1. Range of Values
Magnitude  values  ranged  from  3.0  to  6.5  on  the
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Richter scale, with frequency data indicating occurrences
from  rare  (less  than  once  a  year)  to  frequent  (multiple
times a year).

3.5.4.2. Relevance
Understanding seismic activity is critical for assessing

the  risk  of  structural  damage  or  failure  during
construction.

3.5.5. Water Quality (Surface and Groundwater)
Parameters  included  pH,  turbidity,  and  levels  of

specific  contaminants  (e.g.,  nitrates,  heavy  metals).

3.5.5.1. Range of Values
pH  values  ranged  from  6.5  to  8.5,  turbidity  ranged

from  5  to  50  NTU,  and  contaminant  levels  varied
depending on the local environment (e.g., nitrates ranged
from 0 to 20 mg/L).

3.5.5.2. Relevance
Water  quality  measures  are  vital  for  assessing  the

potential  environmental  impacts  of  construction on local
ecosystems.

3.5.6. WAir Quality
Parameters  included  concentrations  of  PM10,  NOx,

SOx,  and  CO2.

3.5.6.1. Range of Values

PM10  concentrations  ranged  from  20  to  100  µg/m3,
NOx ranged from 10 to 40 ppb, SOx ranged from 5 to 20
ppb, and CO2 levels ranged from 350 to 500 ppm.

3.5.6.2. Relevance
Air quality data is important for predicting the impact

of construction activities on local air pollution levels.

3.5.7. Noise and Vibration Levels
Parameters  included  baseline  noise  levels  and  peak

particle velocity (PPV) for vibrations.

3.5.7.1. Range of Values
Noise  levels  ranged  from  50  dB(A)  to  70  dB(A),  and

vibration levels (PPV) ranged from 0.1 mm/s to 0.5 mm/s.

3.5.7.2. Relevance
Noise  and  vibration  data  help  assess  the  potential

impact  on  nearby  communities  and  structures.

3.5.8. Meteorological Data
Parameters  included  temperature,  humidity,  preci-

pitation  patterns,  and  wind  speed/direction.

3.5.8.1. Range of Values
Average  temperatures  ranged  from  15°C  to  30°C,

humidity  ranged  from  50%  to  90%,  precipitation  levels
ranged  from  500  mm  to  1500  mm  annually,  and  wind
speeds  ranged  from  2  m/s  to  10  m/s.

3.5.8.2. Relevance
Meteorological  data  provides  context  for  under-

standing how weather conditions might affect construction
processes and environmental impacts.

3.5.9. Soil Contamination Levels
Parameters  included  concentrations  of  heavy  metals

(e.g., lead, mercury) and hydrocarbons.

3.5.9.1. Range of Values
Lead  concentrations  ranged  from  10  mg/kg  to  100

mg/kg,  and  hydrocarbons  ranged  from  20  mg/kg  to  200
mg/kg.

3.5.9.2. Relevance
Soil  contamination  levels  are  critical  for  assessing

environmental  risks  and  potential  remediation  needs.

3.5.10. Sedimentation Rates
Parameters included the rate of sediment deposition.

3.5.10.1. Range of Values
Sedimentation  rates  ranged  from  1  mm/year  to  5

mm/year.

3.5.10.2. Relevance
Sedimentation  data  is  important  for  predicting

changes  in  local  water  bodies  due  to  construction
activities.

3.5.11. Data Normalization and Preprocessing
To ensure the models could effectively learn from this

diverse  set  of  inputs,  all  parameters  were  normalized
using  min-max  scaling,  which  transforms  the  data  to  a
uniform range (0 to 1). This step was essential to prevent
parameters  with  larger  ranges  from  disproportionately
influencing the model training process. The preprocessing
also  involved  handling  missing  values,  outlier  detection,
and feature selection to enhance the predictive power and
reliability of the models.

By detailing these input parameters and their ranges,
the revised manuscript provides a clearer understanding
of the data used to train our machine learning models and
how this data reflects the complex and variable conditions
encountered in tunnel construction projects.

3.6. Dataset Size and Composition
In this study, we utilized a substantial dataset to train

and  validate  our  machine-learning  models,  ensuring  a
comprehensive analysis of environmental and geotechnical
uncertainties in tunnel construction. The training dataset
consisted of 10,000 samples, collected from various tunnel
construction  projects  across  different  geographic
locations. These samples were carefully curated to include
a  wide  range  of  environmental  and  geotechnical
conditions,  reflecting  the  diversity  and  complexity
inherent  in  tunnel  construction  scenarios.
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3.6.1. Dataset Composition
The dataset included a variety of parameters essential

for assessing the environmental impact and geotechnical
stability  of  tunnel  construction  projects,  as  detailed  in
Section  3.5.  Each  sample  in  the  dataset  provided  data
points  on  key  factors  such  as  soil  composition,  rock
quality, groundwater levels, seismic activity, water and air
quality,  noise  and  vibration  levels,  meteorological  data,
soil contamination, and sedimentation rates. The diversity
of this dataset allowed us to train the models on a broad
spectrum  of  conditions,  enhancing  their  ability  to
generalize  across  different  tunnel  construction
environments.

3.6.2.  Size  Justification  and  Impact  on  Model
Performance

The use of 10,000 samples was particularly important
for ensuring the robustness and accuracy of the machine
learning  models.  A  larger  dataset  size  allows  for  better
model  training,  reducing  the  risk  of  overfitting  and
enhancing the model’s ability to perform well  on unseen
data. The diversity in the dataset also helped in capturing
both geotechnical  and aleatoric  uncertainties,  which are
critical  for  making  reliable  predictions  in  tunnel
construction projects. By training on a substantial dataset,
the models developed are better equipped to handle real-
world  complexities  and  variabilities,  leading  to  more
accurate  predictions  and  effective  mitigation  strategies.

3.6.3. Data Collection and Preprocessing
The data for each sample was collected from reliable

sources,  including historical  project  data,  environmental
monitoring reports, and public databases. After collection,
the  data  underwent  a  thorough  preprocessing  phase,
including normalization, outlier detection, and handling of
missing  values,  to  ensure  high  data  quality  and
consistency. This preprocessing was crucial for preparing
the dataset for effective model training, further enhancing
the reliability of the results.

By  incorporating  these  details  into  the  revised
manuscript, we aim to provide a clearer understanding of
the  dataset  size  and  composition,  highlighting  how  the
extensive  data  used  in  this  study  supports  the
development  of  robust  and  reliable  machine-learning
models  for  tunnel  construction.

3.7. Output Parameters Predicted by the Models
The machine learning models developed in this study

were  designed  to  predict  a  range  of  critical  output
parameters  that  are  essential  for  ensuring  the  safety,
reliability,  and  environmental  sustainability  of  tunnel
construction  projects.  These  output  parameters  are
derived from the input data discussed in Sections 3.5 and
3.6  and  are  fundamental  to  assessing  both  the
geotechnical  and  environmental  risks  associated  with
tunneling activities. The following output parameters were
specifically targeted:

3.7.1. Surface Settlement

3.7.1.1. Description
The  models  predict  the  magnitude  and  spatial

distribution  of  surface  settlement,  which  refers  to  the
downward movement of the ground surface that can occur
as a result of tunneling activities.

3.7.1.2. Importance
Accurate prediction of surface settlement is crucial for

assessing  the  potential  impact  on  nearby  buildings,
infrastructure,  and  natural  features.  This  information
allows for proactive measures to be taken to mitigate any
negative  effects,  such  as  structural  reinforcements  or
changes  to  construction  methods.

3.7.2. Tunnel Stability

3.7.2.1. Description
The  models  forecast  the  stability  of  the  tunnel

structure  under  varying  geological  and  environmental
conditions,  predicting  potential  structural  failures,
collapses,  or  deformations  within  the  tunnel.

3.7.2.2. Importance
Predicting tunnel stability is essential for ensuring the

safety of construction workers and the long-term viability
of the tunnel. By anticipating areas of potential instability,
engineers  can  reinforce  those  sections  or  adjust
construction  techniques  to  prevent  failures.

3.7.3. Groundwater Ingress

3.7.3.1. Description
The  models  estimate  the  rate  and  volume  of

groundwater entering the tunnel. This includes predicting
both  the  immediate  ingress  during  construction  and
potential  long-term  water  inflow.

3.7.3.2. Importance
Managing groundwater ingress is vital for maintaining

safe  working  conditions  and  protecting  the  tunnel
structure from water damage. Accurate predictions enable
the  design  of  effective  water  control  measures,  such  as
dewatering systems and waterproof linings, reducing the
risk of flooding and water-related damage.

3.7.4. Environmental Impact Metrics

3.7.4.1. Description
The models predict a variety of environmental impact

metrics,  including  changes  in  air  quality  (e.g.,
concentrations  of  PM10,  NOx,  SOx,  CO2),  water  quality
(e.g.,  pH,  turbidity,  contaminant  levels),  noise  levels,
vibration  levels,  and  potential  ecological  disruptions.

3.7.4.2. Importance
Predicting  these  environmental  impact  metrics  is

critical  for  assessing  the  broader  ecological  and  human
health  effects  of  tunneling  activities.  Accurate  forecasts
allow  for  the  implementation  of  mitigation  strategies  to
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minimize  adverse  effects,  ensuring  compliance  with
environmental  regulations  and  promoting  sustainable
construction  practices.

3.7.5. Seismic Impact on Tunnel Integrity

3.7.5.1. Description
The  models  forecast  the  potential  impact  of  seismic

events on the integrity of the tunnel structure, predicting
how different magnitudes and frequencies of earthquakes
could affect the tunnel.

3.7.5.2. Importance
Understanding the seismic impact on tunnel integrity

helps  in  designing  tunnels  that  are  resilient  to
earthquakes,  thereby  reducing  the  risk  of  damage  or
collapse  during  seismic  events.

3.8. Enhancing the Generalization Ability of Machine
Learning Models

The  generalization  ability  of  a  machine  learning  (ML)
model its capacity to perform well on new, unseen data—is
crucial  for  its  application in real-world scenarios,  such as
tunnel  construction.  To  ensure  that  our  models  could
generalize  effectively  to  diverse  environmental  and
geotechnical  conditions,  we  employed  several  strategies:

3.8.1. Cross-validation

3.8.1.1. Description
We used k-fold cross-validation to evaluate our models,

where the dataset was split into 'k' subsets, and the model
was  trained  on  'k-1'  subsets  while  being  validated  on  the
remaining  subset.  This  process  was  repeated  'k'  times,
allowing  each  subset  to  serve  as  a  validation  set  once.

3.8.1.2. Purpose
Cross-validation  helps  in  assessing  the  model’s

performance across different subsets of data, reducing the
risk of overfitting and ensuring the model learns patterns
that generalize well to new data.

3.8.2. Hyperparameter Tuning

3.8.2.1. Description
We performed extensive  hyperparameter  tuning  using

techniques  such  as  grid  search  and  random  search.  This
involved  systematically  varying  model  parameters  (e.g.,
learning rate, tree depth for GBM, number of estimators for
AdaBoost)  to  find  the  optimal  settings  that  maximize
performance  on  the  validation  set.

Proper  tuning  of  hyperparameters  is  essential  for
enhancing  model  generalization  by  balancing  bias  and
variance. This process ensures that the model is neither too
simple (underfitting) nor too complex (overfitting).

3.8.3. Regularization Techniques

3.8.3.1. Description
Regularization  methods,  such  as  L1  (Lasso)  and  L2

(Ridge)  regularization,  were  incorporated  into  the  model
development process. These techniques add a penalty term
to the loss function to constrain the magnitude of the model
coefficients.

3.8.3.2. Purpose
Regularization  helps  prevent  overfitting  by  dis-

couraging overly complex models with large coefficients,
thereby improving generalization to new data.

3.8.4. Use of a Diverse and Extensive Dataset

3.8.4.1. Description
The training dataset consisted of 10,000 samples from

various tunnel construction projects worldwide, covering a
wide range of geotechnical and environmental conditions.
This included different soil types, rock qualities, ground-
water levels, seismic activities, and more.

3.8.4.2. Purpose
Training on a diverse dataset  helps the models  learn

general  patterns  that  are  applicable  across  different
scenarios,  enhancing  their  ability  to  generalize  to  new,
unseen environments.

3.8.5. Data Augmentation and Synthesis

3.8.5.1. Description
In  addition  to  real-world  data,  synthetic  data  was

generated  to  augment  the  dataset,  simulating  a  wider
range of possible conditions and scenarios that might not
be fully captured in the available historical data.

3.8.5.2. Purpose
This approach ensures that the model is exposed to a

broader  spectrum  of  potential  conditions,  thereby
enhancing its robustness and generalization capabilities.

3.8.6. Early Stopping and Model Ensembling

3.8.6.1. Description
Early  stopping  was  used  during  training  to  halt  the

process when performance on the validation set no longer
improved,  preventing  overfitting.  Additionally,  model
ensembling techniques, such as stacking and bagging, were
employed to combine the strengths of multiple models.

3.8.6.2. Purpose
Early  stopping prevents  the model  from becoming too

tailored  to  the  training  data,  while  ensembling  reduces
variance  and  improves  predictive  accuracy  by  leveraging
multiple models.

By employing these strategies, we aimed to enhance the
generalization  ability  of  our  machine  learning  models,
ensuring  they  could  reliably  predict  environmental  and
geotechnical  impacts  in  various  tunnel  construction
scenarios.  These  techniques  collectively  contribute  to
developing  robust  models  capable  of  adapting  to  diverse
and  dynamic  construction  environments,  thereby  suppor-
ting  safer  and  more  sustainable  infrastructure  develop-
ment.

3.8.2.2. Purpose
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These  techniques  include  using  cross-validation  to
ensure the model performs well on different subsets of the
data,  applying  regularization  methods  like  L1  and  L2
regularization  to  penalize  overly  complex  models,  and
employing early stopping during training to halt the process
when  the  model's  performance  on  a  validation  set  stops
improving.  Additionally,  we  utilized  data  augmen-  tation
and  synthesized  data  to  increase  the  diversity  of  the
training set, which helps the model generalize better to new
data. We will provide a comprehensive explanation of these
approaches to clarify how our study addresses the risk of
overfitting,  ensuring  robust  and  reliable  model
performance.

3.9. Evaluate of Performance
These detailed descriptions of the performance metrics

used to evaluate the machine learning algorithms, along
with their formulas.

The key indicators we used are:

3.9.1. Accuracy
Measures the proportion of correct predictions over the

total number of predictions.

3.9.2. Precision
Indicates  the  proportion  of  true  positive  predictions

among all positive predictions made by the model.

3.9.3. Recall (Sensitivity)
Represents the proportion of true positive predictions

among all actual positive cases.

3.9.4. F1 Score
The harmonic mean of precision and recall, providing a

balance between the two metrics.

3.9.5. Log Loss
Measures  the  performance  of  a  classification  model

where the prediction input is a probability value between
0 and 1.

whereyi  is  the  true  label  and  pi  is  the  predicted
probability  for  the  i-th  sample.

3.9.6. Mean Squared Error (MSE)
Evaluates the average squared difference between the

predicted values and the actual values.

where  yi  is  the  actual  value  and   is  the  predicted
value for the i-th sample.

3.9.7. Log-Likelihood
Used for evaluating models that predict probabilities,

especially  in  probabilistic  models  like  Hidden  Markov
Models  (HMMs).

where P(yi|Xi) is the probability of the i-th output given
the input Xi.

4. RESULT AND DISCUSSION
The presented research has shown the results  of  the

considered  evaluation  of  different  machine  learning
algorithms  which  have  been  utilized  in  predicting  and
preventing AI in the tunnel construction when operating
under  geotechnical  and  aleatoric  uncertainties.  The
evaluation  demonstrated  that  each  of  the  considered
algorithms exhibits specific results in accordance with the
used  metrics  and  cannot  be  viewed  as  ineffective  or
unsuitable  for  any  case.

For the Gradient Boosting Machines (GBM) presented
in Fig. (2), all of the metrics demonstrate a high level of
predictive  accuracy  and  general  reliability.  First,  the
accuracy of 0.92 suggests that the model is correct in its
predictions  regarding  the  presence  of  environmental
impact  in  92%  of  cases.  Considering  that  our  analysis
consists  of  three  classes  and  presumes  that  any  impact
noted should be considered significant, this accuracy rate
can  be  seen  as  high  and  indicative  of  the  model’s
robustness.  The  precision  metric  is  also  high,  at  0.88,
suggesting  that  the  model  is  accurate  in  detecting  and
reporting significant environmental impacts but produces
few false alarms in the process.

GBM has strong performance across all metrics, which
proves  that  it  is  a  suitable  choice  for  predicting
environmental impacts in tunnel construction. Judging by
the  recall  value  of  0.91,  one  can  conclude  that  it  can
identify  91%  of  all  actual  positive  cases.  Therefore,  one
can say that this model can successfully detect most of the
impacts that can be classified as significant. The F1 Score
is  0.90,  which  implies  that  the  chosen  method  balances
precision  and  recall  effectively.  Hence,  it  can  also  be
concluded that this model can identify most of the cases
correctly with a minimum number of false positives. The
Log  Loss  equals  0.35;  one  can  assume  that  the
probabilistic predictions are accurate because this value is
low.  The  Mean Squared Error  of  0.12  also  supports  this
idea and shows that the predicted values are close to the
gathered  ones.  In  conclusion,  it  is  possible  to  say  that
GBM is strong across all the studied metrics.

Accuracy =
Number of Correct Predictions

Total Number of Predictions
 

Precision =
True Positives

True Positives + False Positives
 

Recall =
True Positives

True Positives + False Negatives
 

F1 Score = 2 ×
Precision × Recall

Precision + Recall
 

Log Loss = −
1

𝑁
∑ (𝑦𝑖log(𝑝𝑖) + (1 − 𝑦𝑖)log(1 − 𝑝𝑖))

𝑁

𝑖=1
 

MSE =
1

𝑁
∑ (𝑦𝑖 −  𝑦

^

𝑖)2
𝑁

𝑖=1
 

Log-Likelihood = ∑ log(𝑃(𝑦𝑖 ∣ 𝑋𝑖)
𝑁
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Fig. (2). Gradient boosting machines (GBM) metrics.

Fig. (3). AdaBoost metrics.
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From  Fig.  (3),  Adaboost  shows  a  relatively  good
performance, albeit slightly below GBM. With an accuracy
rate  of  0.90,  the  model  proves  capable  of  forecasting
environmental impacts correctly in 90% of cases, which is
very reliable. The precision rate of 0.86 means that 86% of
the positive predictions are correct, which is slightly lower
than  in  GBM.  The  recall  rate  of  0.89  indicates  that  the
model can identify 89% of the real positive cases,  which
means  that  it  is  very  effective  in  detecting  the  most
significant impacts. In the meantime, the F1 score of 0.88
indicates  a  balanced  performance  in  terms  of  precision
and recall, albeit slightly below GBM. The log loss value of
0.40 is slightly higher than GBM, although the difference
is not major – the probabilistic forecast may be somewhat
less  reliable  than  the  one  made  by  the  former  model.
Finally,  the  MSE  of  0.15  is  only  slightly  higher,  which
means that the new algorithm makes slightly more errors
than GBM.

Overall,  the  forecasting  capabilities  of  the  Adaboost
are certainly strong, and the model may be accepted as a
reasonably  good  instrument  for  assessing  the  environ-
mental impacts of constructing tunnels. From Fig. (4), the
results  for  Hidden  Markov  Models  show  a  different
perspective  of  the  performance  of  AI  algorithms.  The
HMM has  an  accuracy  of  0.88,  meaning  that  this  model
correctly predicts environmental impacts in 88% of cases,
which, while worse than GBM and AdaBoost, is still rather
good.  The  precision  of  0.84  states  that  84%  of  positive
predictions are correct, and a recall of 0.87 indicates that
the model finds 87% of positives among actual cases. The

F1 Score is 0.86, which shows that the precision and recall
values  are  balanced,  and  nevertheless,  this  indicator  is
worse than for the other models.

The log-likelihood value is -125.6, which describes how
the  model  fits  the  data,  with  more  negative  values
indicating  poor  fitting.  Thus,  HMM  has  the  same
disadvantages as GBM and AdaBoost, but as it can handle
sequence  data,  it  can  be  rather  valuable  in  scenarios
where  time-series  predictions  matter  and  data  are
sequential  by  nature.  This  can  be  rather  useful  for
monitoring the changes in environmental conditions over
time  while  constructing  a  tunnel  and  predicting  the
variations.

Finally,  from  Fig.  (5),  the  Deep  Q-Networks  can
provide  a  different  approach,  as  it  is  known  as  the
reinforcement  learning  algorithm  that  focuses  on
optimizing decision-making policies based on rewards. The
cumulative  reward  equal  to  950  implies  that  the  final
algorithm well minimizes the long-term loss, which means
it learns optimal strategies to affect the environment. The
convergence rate of 0.92 is the key indicator that can be
observed  in  the  simulation  data  and  implies  that  the
algorithm is  rather fast  in learning the environment and
reaching a stable performance. Additionally, the value of
the  policy  stability  metric  is  not  inconsiderable  at  0.88,
which  means  that  integrated  policies  are  rather  similar
over  time.  Overall,  it  is  appropriate  to  conclude  that
reinforcing learning was efficient with reference to getting
used to new features of the environment.

Fig. (4). Hidden markov models (HMM) metrics.
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Fig. (5). Deep Q-networks (DQN) reinforcement learning metrics.

In  summary,  the  evaluation  of  the  representative
machine learning algorithms has shown that each of them
has its advantages and areas of potential use in improving
tunnelling  construction  reliability  under  uncertainties.
Thus,  regarding  the  prediction  of  environmental  impacts,
both GBM and AdaBoost tested in the research show a high
accuracy  level,  and  they  can  be  considered  reliable
algorithms with only slight differences between them in this
context. Given that, these approaches can be applied in the
case of high demand for precise predictions with a focus on
ensuring the best trade-off. As for the HMM, it provides an
alternative perspective with the analysis of sequential data,
and therefore, it can be used for time series predictions and
monitoring. Finally, DQN is targeted at the optimisation of
long-term strategies with the help of reinforcement ideas,
and  the  described  qualities  allow  it  to  offer  the  most
dynamic and adaptive solution, which can be continuously
improved  in  response  to  the  environmental  changes
occurring  during  the  construction.

The  found-out  implications  for  the  tunnelling
construction  area  can  be  mainly  characterized  as
significant. So, by integrating the AI-driven models during
the construction process, the project managers can predict
the impacts on the environment with more accuracy that, in
turn,  helps  to  enhance  construction  safety  and  efficiency
and  take  measure  to  prevent  risks  that  can  occur.  In
addition,  the  enhanced  environmental  safety  leads  to
obtaining  fewer  adverse  effects  on  the  ecosystem  that
meets  the  requirement  of  environmental  sustainability.
Also, the scenario of using the AI models helps to analyse
geotechnical uncertainty and aleatoric uncertainty based on

a wide range of data being relatively large and complex.
It is notable that the present research has highlighted

some  of  the  promising  perspectives  of  AI  in  tunnel
construction,  promoting  advanced  tools  to  deal  with  the
existing  uncertainties  and  enhance  the  outcomes.  The
decent results achieved by the algorithm in question may be
employed in the construction industries to guarantee higher
reliability  and  safety  in  the  context  of  environmental
protection.  As  for  the  further  perspectives,  with  the
development of AI technologies, the tools will become more
sophisticated, promoting the enhancement of construction
processes and making the industry a part of more resilient
and sustainable infrastructure.

CONCLUSION
This  study  demonstrates  the  significant  potential  of

applying  advanced  machine  learning  (ML)  algorithms  to
enhance  the  reliability  and  sustainability  of  tunnel
construction.  By  integrating  Gradient  Boosting  Machines
(GBM),  AdaBoost,  Hidden  Markov  Models  (HMM),  and
Deep  Q-Networks  for  Reinforcement  Learning,  we
effectively  addressed  both  geotechnical  and  aleatoric
uncertainties,  which  are  critical  factors  in  tunnel
construction  projects.

KEY FINDINGS AND CONTRIBUTIONS

Improved Predictive Accuracy
The application of machine learning models resulted in

high  predictive  accuracy  for  environmental  impacts  and
construction risks. For example, GBM achieved an accuracy
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of  0.92  and  an  F1  score  of  0.90,  demonstrating  its
robustness  in  predicting potential  environmental  impacts,
such as surface settlement and groundwater ingress.

Optimization of Construction Strategies
The  use  of  Deep  Q-Networks  for  Reinforcement

Learning  allowed  for  the  identification  of  optimal  tunnel
construction strategies under varying conditions, achieving
a  cumulative  reward  of  950.  This  indicates  the  model’s
effectiveness  in  making  adaptive  decisions  to  minimize
environmental impact while maintaining construction safety
and efficiency.

Addressing Uncertainties
By  leveraging  AI  techniques,  the  study  successfully

addressed  the  complex  uncertainties  associated  with
geotechnical  properties  and  unpredictable  environmental
conditions.  The  models  incorporated  diverse  data  inputs
and utilized advanced algorithms to improve the decision-
making  process  during  construction,  reducing  risks  and
enhancing  resilience.

Broader Implications for Infrastructure Development
The findings underscore the transformative potential of

AI  in  civil  engineering,  particularly  in  managing complex,
data-intensive  projects  like  tunnel  construction.  The
methods  developed  in  this  study  can  be  adapted  to  other
types  of  infrastructure  projects,  contributing  to  the
development  of  more  sustainable  and  resilient  urban
environments.

Future Research Directions
This  research  opens  several  avenues  for  further

exploration,  including  the  integration  of  real-time  data
streams to enhance model adaptability and the application
of  these  methods  to  other  construction  domains.  Future
work could also explore hybrid models combining multiple
ML techniques to further improve predictive accuracy and
decision-making capabilities.
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