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Abstract:
Background: The problem of early cracking at the construction stage caused by the heat release of concrete and
uneven heating is relevant for thick foundation slabs. The aim of this work is to develop models of artificial neural
networks for predicting the level of temperature stresses that arise during the construction of massive monolithic
foundation slabs.

Methods:  Two  models  of  artificial  neural  networks  (ANN)  for  predicting  the  risk  of  early  cracking  during  the
construction of foundation slabs are proposed in this article. The first model predicts the maximum tensile stress level
(the  ratio  of  tensile  stress  to  the  current  tensile  strength)  for  the  slab  made from slow-hardening  concrete.  The
second model does the same for quick-hardening concrete. The ANN models are implemented in the Neural Network
Toolbox package of the MATLAB environment. The architecture of the models is a feed-forward neural network with
two hidden layers. The input parameters of the models are the thickness of the foundation slab, the average ambient
temperature, the heat transfer coefficient on the upper surface, the grade of concrete by compressive strength, and
the thermophysical characteristics of the soil base. The models are trained on synthetic data obtained by 759,375
numerical experiments with varying input parameters.

Results: The theoretical model underlying the formation of the synthetic training dataset is preliminarily tested on
experimental data. Trained models allow predicting the risk of early cracking for foundation slabs with a thickness of
0.7 to 3 m for all possible values of the heat transfer coefficient on the upper surface, ambient temperatures from +5
°C  to  +35  °C,  concrete  grade  from  B25  to  B45  according  to  Russian  standards.  The  developed  ANNs  are
characterized by high forecasting quality in terms of the mean square error and the correlation coefficient between
target and predicted values. The article also assesses the significance of input parameters using the trained neural
networks.

Conclusion: An analysis using artificial intelligence showed that the most significant parameter influencing the risk
of early cracking is the thickness of the foundation slab. Other significant parameters include ambient temperature,
the heat transfer coefficient on the upper surface, and the concrete grade by compressive strength. The thermal
properties of the soil base do not have a significant effect on the stress level.

Keywords: Thermal stresses, Mass concrete, Foundation slab, Artificial neural network, Early cracking, Machine
learning, Heat of hydration, Tensile strength, Feature importance.
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1. INTRODUCTION
The problem of  early cracking during construction is

relevant  for  massive  monolithic  reinforced  concrete
structures,  including  foundation  slabs,  massive  walls,
piers, etc [1-3]. This negative phenomenon is primarily due
to the occurrence of non-uniform temperature fields and
stresses  caused  by  the  heat  of  hydration  of  hardening
concrete  and heat  exchange with  the environment  [4-6].
Currently, the main method for predicting the risk of early
cracking is finite element modeling of temperature fields
and  stresses  [7-9].  Finite  element  analysis  is  usually
performed  in  a  three-dimensional  setting  in  the  time
domain,  and  this  approach  requires  large  computing
resources, as well as time costs for model preparation and
calculation.  Currently,  machine  learning  methods  are
rapidly  developing  and  can  become  an  alternative  to
traditional  methods.

The analysis of current publications demonstrates that
machine learning methods are now mainly used to detect
cracks in reinforced concrete structures. In a study [10],
an  algorithm  was  proposed  for  automatically  detecting
cracks  in  images,  as  well  as  analyzing  their  length  and
width  using  convolutional  neural  networks.  Moreover,
deep convolutional neural networks were optimized using
a  chicken  swarm  algorithm  to  detect  cracks  in
photographs  [11].  It  allowed  for  increased  detection
accuracy  and  reduced  computational  costs.  Deep,  fully
convolutional  neural  networks  were  used  [12]  to  detect
cracks  in  videos  of  cyclic  tests  for  reinforced  concrete
structures.  The  machine  learning  models  used  achieved
97.8% detection accuracy.

In research [13], a cascade broad neural network was
built  for  the  automatic  classification  of  defects  in
reinforced  concrete  structures.  This  type  of  artificial
neural  network  is  an  effective  and  productive  structure
that includes a much smaller number of hyperparameters
than  deep  neural  networks.  The  developed  model  of  the
artificial  neural  network  was  tested  on  four  complex
datasets. As a result, it demonstrated higher performance
than other modern classification methods in both testing
accuracy and training time.

Miao  and  Srimahachota  proposed  a  method  for
detecting surface cracks in reinforced concrete structures
based on a combination of convolutional neural networks
and  image  processing  techniques  [14].  The  proposed
method was semi-automated and allowed for the analysis
of images collected during an inspection at a construction
site or during an experiment.

In  a  study,  Han  et  al.  examined  the  issues  of  crack
detection  in  reinforced  concrete  structures  based  on
acoustic emission signals processing using convolutional
neural  networks  [15].  The  developed  technique  can  be
used  to  model  pile-grillage  foundations  in  real-time.

Ai  et  al.  proposed a method for  determining stresses
and  damages  in  concrete  based  on  electromechanical
conductivity  data  with  the  use  of  convolutional  neural
networks  [16].  The  proposed  approach  was  tested  by
monitoring the process of deformation and destruction of

a  concrete  cube  under  compression.  A  similar  problem
was  solved  using  two-dimensional  convolutional  neural
networks  by  Ai  and  Cheng  [17].

In  several  studies  [18,  19],  artificial  neural  networks
were  applied  to  predict  the  properties  of  early-age
hardening concrete. Boshoff and Combrinck predicted the
autogenous  shrinkage  of  concrete  based  on  the  cement
content,  water-cement  ratio,  type  and  percentage  of
additional binder, total aggregate volume, and hydration
age.  Wyrzykowski  et  al.  examined the heat  of  hydration,
Young's modulus, and shear modulus.

Wang et al.  [20] carried out an important analysis of
the  features  influencing  the  crack  opening  width  in
concrete  dams  using  recurrent  neural  networks.  As  a
result,  the  four  most  significant  factors  were  identified,
namely,  crack  temperature,  upstream  water  level,  the
difference  between  upstream  and  downstream  water
levels,  and  the  difference  between  ambient  and  crack
temperatures.

Zhang  et  al.  applied  machine  learning  algorithms,
namely  support  vector  regression  in  combination  with  a
genetic  algorithm,  to  predict  the  shear  strength  of  deep
reinforced concrete beams [21]. Another study conducted by
Yan et  al.  [22]  aimed to predict  the load-bearing capacity,
residual  stiffness,  cracking,  and  energy  dissipation  under
cyclic  loads  on  reinforced  concrete  beams  using  artificial
neural networks. A similar problem was solved by Kumar et
al. [23]. They applied methods of extreme gradient boosting
(XGB),  the  random  forest  (RF),  the  convolutional  neural
network (CNN), and K-nearest neighbors (KNN) to predict
the  bearing  capacity  of  beams  made  of  high-strength  and
ultra-high-strength concrete.

Thus, machine learning methods can act as an effective
tool for predicting the properties of hardening concrete at
an  early  age,  detecting  cracks  in  it,  and  predicting  the
development  of  cracks  as  well  as  structural  failure  during
operation.  Compared  to  traditional  approaches,  artificial
neural networks make it possible to analyze large volumes of
data and establish patterns that are not visible to the naked
eye and are not very obvious at first glance. The problem of
predicting the risk of early cracking during the construction
of  reinforced concrete structures can also be solved using
machine learning methods. This article aimed to solve this
problem. Massive monolithic foundation slabs were selected
as  an  object  of  study  since  they  make  up  a  significant
volume  of  reinforced  concrete  structures.

2. MATERIALS AND METHODS
The following values were adopted as input parameters

for machine learning models:
1. The thickness of the foundation slab H, m.
2. Average daily ambient temperature Tm , °C
3.  Heat  transfer  coefficient  on  the  upper  surface  h,

W/(m2  ∙°C)
4.  Concrete  grade  by  compressive  strength  B,  MPa

according  to  Russian  standard  GOST  18105-2018.
5.  Thermal  conductivity  coefficient  of  soil  under  the

foundation  slab,  λg,  W/(m∙°С)
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6. Specific heat capacity of soil cg, J/(kg∙°C)

7. Soil density ρg, kg/m 3

The maximum tensile stress-to-strength ratio s = σ/Rt

was  adopted  as  the  output  parameter  of  the  models.
During the construction process, cracks do not form if s <
1. If s ≥ 1, technological cracks are formed.

A  number  of  values  were  not  included  in  the  input
parameters  of  artificial  neural  network  models.  These
values include the dimensions of the slab in the plan and
the heat transfer coefficient on the side surfaces. This is
justified by the fact that, with the exception of the edges,
the  distribution  of  temperatures  and  stresses  in  the
foundation  slabs  is  one-dimensional;  temperatures  and
stresses are the functions of the z coordinate only [24].

Two  independent  models  were  built  for  the  cases  of
using slow-hardening and quick-hardening concrete. The
supervised learning method was used to train the models.
Synthetic data were generated, which were the results of
numerous  numerical  experiments.  When  forming  the
training  datasets,  a  series  of  calculations  with  changing
values  of  the  input  parameters  were  performed.  The
thickness  of  the  foundation  slab  varied  from  0.7  to  3  m
with a step of 0.2875 m (9 different values). The average
daily ambient temperature varied from +5 °C to +35 °C
with  a  step  of  3.75  °C  (9  different  values).  The  heat
transfer coefficient on the upper surface varied from 2 to
30 W/(m2 ∙ °C) with a step of 2 W/(m2 ∙ °C) (15 different
values). The concrete grade varied from B25 to B45 with a
step  of  5  MPa  (5  different  values).  The  thermal
conductivity coefficient of the soil varied from 0.56 to 2.67
W/(m∙°C)  with  a  step  of  0.528  W/(m∙°C)  (5  different
values). The specific heat capacity of the soil varied from
1000  to  3500  J/(kg∙°C)  with  a  step  of  625  J/(kg∙°C)  (5
different  values).  The  soil  density  varied  from  1500  to
2500 kg/m3 with a step of 250 kg /m3 (5 different values).

Thus,  the  volume  of  training  datasets  was
9×9×15×5×5×5×5  =  759,375  numerical  experiments.

A  numerical  experiment  to  determine  the  maximum
value  of  the  stress  level  s  was  carried  out  using  the
algorithm proposed previously [24]. The temperature field
was calculated using the finite element method in a one-
dimensional  formulation  using  the  previously  reported
technique [25]. The heat release function of concrete was
taken as [26] (Eq 1):

(1)

Where t is the time in days, Q28 is the total heat release
at the time of 28 days in MJ/m3, and the coefficients k and
x determine the kinetics of heat release.

The quantitative values of the parameters included in
formula  (1)  for  concrete  grades  B25  and  B45  are
presented  in  Table  1  [27].

To unify the calculations, the value k was taken to be
0.145  for  quick-hardening  concrete  and  0.27  for  slow-
hardening concrete, regardless of the concrete grade. The
value  of  x  was  taken  to  be  0.485  for  quick-hardening
concrete  and  0.715  for  slow-hardening  concrete.

The  value  Q28  for  concretes  of  intermediate  grades
between  B25  and  B45  was  determined  by  linear
interpolation.  This  is  justified  by  the  fact  that  the  heat
release of concrete is proportional to its cement content,
and the compressive strength is  also proportional  to  the
cement content in 1m3 of concrete.

In  addition  to  the  seven  values  selected  as  input
parameters,  when  conducting  numerical  experiments,  it
was necessary to specify a number of other values, which
were taken as constant. They are indicated in Table 2.

Table 1. Quantitative values of the parameters included in formula (1) [27].

Concrete Grade Hardening Rate Q28, MJ/m3 k x

B25
Quick-hardening

130
0.15 0.47

Slow-hardening 0.26 0.7

B45
Quick-hardening

190
0.14 0.5

Slow-hardening 0.28 0.73

Table 2. Constants required for calculating temperature fields and stresses.

Quantity Designation Units of Measurement Value

Number of time steps nt - 1000
End time t2 h 2000
Density of concrete ρ kg/m3 2400
Specific heat capacity of concrete c J/(kg∙°C) 1000
Thickness of the soil massif Hg m 10
Thermal conductivity coefficient of concrete λ W/(m∙°C) 2.67
Poisson's ratio of concrete ν - 0.2
Coefficient of linear thermal expansion of concrete α 1/°С 10-5

  28

28
exp 1 ,

x

Q t Q k
t
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The initial temperature of the soil mass was assumed
to  be  equal  to  the  ambient  temperature.  The  initial
temperature  of  the  concrete  mixture  T0  depends  on  the
ambient temperature but is not always equal to it. When
concreting  in  the  cold  period,  the  concrete  mixture  is
usually  heated,  and  in  the  case  of  concreting  in  hot
conditions,  ice  can  be  added  to  the  concrete  mixture  to
slow down the setting. We assumed a linear dependence of
the value T0 on Tm (Eq 2):

(2)

When the ambient temperature changed from 5 to 35
°C,  the  initial  temperature  of  the  concrete  mixture
changed  from  10  to  25  °C  according  to  a  linear  law.

When calculating temperature stresses, all mechanical
characteristics of concrete were taken as functions of its
degree  of  maturity  DM,  determined  by  the  integral  [24]
(Eq 3):

(3)

Where T(τ) is the temperature of concrete at time τ.
This  approach  allows  us  to  take  into  account  the

influence of time on the properties of concrete, as well as
the hardening temperature.

The cubic compressive strength of concrete R at time t
was determined using the following formula [24] (Eq 4):

(4)

Where  R28  =  B+12  is  the  compressive  strength  of
concrete at the age of 28 days (MPa), and in ,

t is the age of concrete in hours.
The modulus of elasticity of concrete was represented

as  a  function  of  its  prismatic  compressive  strength  Rb

based  on  the  formula  of  N.I.  Karpenko  [28]  (Eq  5):

(5)

Where Rb=0.8R
The tensile strength Rt was determined as a function of

the  cubic  compressive  strength  using  the  following
formula  [26]  (Eq  6):

(6)

The stress increments ∆σ=∆σx=∆σy  in the foundation
slab per increment of time ∆t without taking into account
the  shrinkage  deformations  of  concrete  based  on  the
method [24] were determined by the following formula (Eq
7):

(7)

Where Δε is the increment of total deformation, which
was calculated using the formula (Eq 8):

(8)

Machine  learning  models  were  implemented  in  the
MATLAB environment (Neural Network Toolbox package).
A feedforward neural network with two hidden layers was
chosen  as  the  architecture  of  artificial  neural  networks.
Each  hidden  layer  contained  12  neurons.  The  activation
function  of  the  neurons  was  specified  as  a  hyperbolic
tangent.  The  neural  network  architecture  used is  shown
schematically in Fig. (1).

Fig. (1). The architecture of artificial neural networks.
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Fig. (2). Temperature change over time for samples with 100% strain limitation.

The training dataset was standardly divided into three
subsets: training, validation, and test. The split ratio was
75%:15%:15%.  The  division  into  subsets  was  performed
randomly.  The  Mean  Squared  Error  (MSE)  value  was
chosen as a metric for the quality of training, which was
calculated using the following formula (Eq 9):

(9)

Where n is the volume of the training dataset, Yi is the
value of the stress level s predicted by the neural network,
and Ti is the target value of the stress level S.

Minimization  of  the  MSE  value  was  performed using
the  Levenberg–Marquardt  optimization  algorithm.  The
number of iterations in the training process was fixed and
equal to 1000.

3. RESULTS AND DISCUSSION
The  theoretical  model,  on  the  basis  of  which  the

training dataset was formed, was preliminarily tested on
the  experimental  data  reported  by  previous  studies  [29,
30].

A study by Bjøntegaard Ø. [29] measured temperature
stresses in hardening concrete samples with 100% strain
limitation.  The  compressive  strength  of  concrete  at  the
design age of 28 days was R28  = 80 MPa. Fig. (2)  shows
the  average  graph  of  the  change  in  temperature  of  the
samples  over  time.  Fig.  (3)  shows  the  change  in
temperature stress over time. The red line corresponds to
the experimental values, and the blue line corresponds to
the  calculated  values  obtained  using  the  formulas  3-5.
These  results  can  be  considered  satisfactory.

Table 3. Initial data used in the field experiment.

Parameter Value

Slab thickness H, m 2.1
Average ambient temperature Tm, °C 17
Heat transfer coefficient on the upper surface h, W/(m2∙°C) 30
Concrete grade B, MPa 25
Thermal conductivity coefficient of soil, λg W/(m∙°C) 1.4
Specific heat capacity of soil cg, J/kg∙°С 2070
Soil density ρg, kg/m3 1039
Concrete hardening rate Quick-hardening
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Fig. (3). Graphs of stress changes over time for samples with 100% strain limitation.

Smolana et al. [30] presented the results of measuring
temperature stresses in a hardening monolithic foundation

slab located on a soil base. Table 3 presents the values of
the  quantities  selected as  input  parameters  of  the  ANN,
with which the field experiment was conducted.

Fig. (4). Comparison of experimental stresses in the foundation slab with calculated ones.
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The  stresses  in  the  specified  experiment  were
measured at z = H/2 (in the middle of the foundation slab
thickness).  Fig.  (4)  shows  a  comparison  of  the
experimental  stress  values  with  the  calculated  ones.  As
shown  in  Fig.  (4),  the  theoretical  model,  which  was  the
basis for the formation of the training datasets, predicted
stresses well at an age of up to 2.5 days. Furthermore, a
deviation was observed, which may be caused by concrete
shrinkage  deformations,  daily  fluctuations  in  ambient
temperature,  features  of  the  heat  release  kinetics  of  a
specific concrete composition used in the experiment, etc.
During the 16 days, an increase in stresses to almost zero
was  observed  on  the  experimental  graph,  which  is  most
likely associated with crack formation. At the moment of
crack  formation,  the  theoretical  model  quite  accurately
predicted the magnitude of tensile stress.

Table 4 presents a fragment of the generated training
dataset  with  target  values  of  stress  level  s  for  slow-
hardening  and  quick-hardening  concrete.

As  presented  in  Table  4,  in  the  case  of  using  slow-
hardening concrete, the stress level s was almost always
higher than in the case of using quick-hardening concrete.
However, this is true only for the selected fragment of the
dataset. The minimum ratio s1 / s2, where s1 corresponds to
the  stress  level  for  slow-hardening  concrete,  and  s2

corresponds  to  the  stress  level  for  quick-hardening
concrete, was 0.41. The maximum value of the ratio s1 / s2

was  2.36,  and  the  average  was  1.36.  Thus,  under  some
conditions, it is preferable to use slow-hardening concrete,
and under other conditions, it is preferable to use quick-
hardening concrete.

Table 4. Fragment of the training dataset.

No. H, m Tm,
°С

h,
W/(m2 ∙°С) B, MPa λg,

W/(m∙°С)
cg,

J/(kg∙°С)
ρg,

kg/m3

s

Slow-hardening Quick-hardening

1 0.7000 5 2 25 0.56 1500 1000 0.2283 0.2370
2 0.9875 5 2 25 0.56 1500 1000 0.3756 0.3408
3 1.2750 5 2 25 0.56 1500 1000 0.5294 0.4484
4 1.5625 5 2 25 0.56 1500 1000 0.6857 0.5611
5 1.8500 5 2 25 0.56 1500 1000 0.8418 0.6768
6 2.1375 5 2 25 0.56 1500 1000 0.9961 0.7939
7 2.4250 5 2 25 0.56 1500 1000 1.1473 0.9106
8 2.7125 5 2 25 0.56 1500 1000 1.2947 1.0256
9 3 5 2 25 0.56 1500 1000 1.4379 1.1381
… … … … … … … … … …

759367 0.7000 35 30 45 2.67 2500 3500 1.0074 0.7368
759368 0.9875 35 30 45 2.67 2500 3500 1.4651 1.0760
759369 1.2750 35 30 45 2.67 2500 3500 1.8860 1.3773
759370 1.5625 35 30 45 2.67 2500 3500 2.2687 1.6397
759371 1.8500 35 30 45 2.67 2500 3500 2.6161 1.8674
759372 2.1375 35 30 45 2.67 2500 3500 2.9321 2.0662
759373 2.4250 35 30 45 2.67 2500 3500 3.2201 2.2415
759374 2.7125 35 30 45 2.67 2500 3500 3.4835 2.3973
759375 3.0000 35 30 45 2.67 2500 3500 3.7253 2.5368

Table 5. Values of the correlation coefficient between the maximum stress level s and the input parameters of
the models.

Parameter
Correlation Coefficient

Slow-Hardening
Concrete

Quick-Hardening
Concrete

Slab thickness 0.8031 0.8269
Average ambient temperature 0.3282 0.1643
Heat transfer coefficient on the upper surface 0.3094 0.2854
Concrete grade 0.2405 0.3233
Thermal conductivity coefficient of soil -0.0995 -0.1033
Specific heat capacity of soil -0.0324 -0.0332
Soil density -0.0799 -0.0818
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Before  training  the  models,  a  correlation  analysis  of
the  generated data  was  also  carried  out  to  preliminarily
assess  the  significance  of  the  input  parameters.  Table  5
presents the values of the correlation coefficient between
the  maximum  value  of  the  stress  level  s  and  the  input
parameters.

Table  5  indicates  that  there  is  a  strong  positive
relationship  between  the  stress  level  s  and  the  slab
thickness regardless of the concrete hardening rate, which
is  quite  an  obvious  result.  For  slow-hardening  concrete,
there  is  a  moderate  positive  relationship  between  the
value s and the ambient temperature, as well as between s
and the heat transfer coefficient on the upper surface. In
the  case  of  slow-hardening  concrete,  the  relationship
between  the  value  s  and  the  concrete  grade  is  weakly
positive.  For  quick-hardening  concrete,  on  the  contrary,
the  relationship  between  s  and  the  concrete  grade  is
moderately  positive,  and  between  s  and  Tm,  as  well  as
between s and h, the relationship is weakly positive.

The  relationship  between  the  thermal-physical
characteristics  of  the soil  (density,  thermal  conductivity,
specific  heat  capacity)  and  the  stress  level  s  is  weakly
negative, regardless of the rate of concrete hardening.

Figs.  (5  and  6)  show  the  neural  network  training
performance graphs for models 1 and 2, corresponding to
slow-hardening  and  quick-hardening  concrete.  The  lines
corresponding to the training, validation, and test samples
overlap  each  other,  indicating  that  the  volume  of  these
samples  is  more  than  sufficient.  Both  models  are
characterized  by  MSE  values  close  to  zero.

Figs. (7 and 8) show the regression plots for models 1
and 2 for the training, validation, and test samples, as well
as for the entire dataset. The abscissa axis of each graph
shows  the  target  values  T  of  the  stress  level,  and  the
ordinate axis shows the values Y predicted by the neural
network.  All  points  on  these  graphs  are  located  on  the
straight line Y = T or near it. The correlation coefficients
RYT between the target and predicted values are close to 1.

Fig. (5). Neural network training performance graph for model 1 (slow-hardening concrete).
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Fig. (6). Neural network training performance graph for model 2 (quick-hardening concrete).

Fig. 7 contd.....
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Fig. (7). Regression plots for model 1 (slow-hardening concrete).

Artificial neural networks also allow us to evaluate the
significance  of  features.  The  significance  of  the  input
parameters  was  evaluated  using  the  method  of  fixing
values. This method is based on the assumption that if a
feature  is  redundant,  then  fixing  its  value  at  the
corresponding input of the neural network will not lead to
a  noticeable  change  in  the  values  at  the  output.  The
algorithm for determining the significance of features is as

follows:
1. For the input parameter whose significance needed

to  be  assessed,  its  average value  in  the  training  dataset
was determined .

2. For each sample in the training dataset, the value of
the  objective  function   was  determined when the
input Xi was fixed.

iX

 
i iX X

s w


Fig. 8 contd.....
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Fig. (8). Regression plots for model 2 (quick-hardening concrete).

Table 6. Significance values of the input parameters.

Parameter
Significance of the Feature Zi

Slow-Hardening
Concrete

Quick-Hardening
Concrete

Slab thickness 0.5459 0.4989
Average ambient temperature 0.1836 0.0839
Heat transfer coefficient on the upper surface 0.1614 0.1457
Concrete grade 0.1075 0.1343
Thermal conductivity coefficient of soil 0.0588 0.0517
Specific heat capacity of soil 0.0201 0.0176
Soil density 0.0472 0.0411

3.  The  significance  of  the  feature  for  the  current
sample  j  was  defined  as  the  absolute  relative  difference
between  the  value  of  the  objective  function  s(w),
characterizing  the  neural  network  with  a  full  set  of
features,  and  the  value   (Eq  10):

(10)

4.  The  average  value  of  the  feature  significance  was
determined for the entire training dataset (Eq 11):

(11)

Table  6  presents  the  significance values  of  the  input
parameters obtained using the method described above.

Table 6  presents that the most significant parameter

influencing the  risk  of  early  cracking is  the  thickness  of
the foundation slab.  Of interest is  the fact that for slow-
hardening  concrete,  the  ambient  temperature  Tm  has  a
greater  effect  on  stress  levels  than  it  does  for  quick-
hardening  concrete.

The heat transfer coefficient on the upper surface has
approximately the same effect on the stress level for both
quick-hardening and slow-hardening concrete. Therefore,
the main measure to prevent the risk of early cracking is
to  reduce  the  heat  transfer  coefficient  on  the  upper
surface  by  insulating  it  [31-33].

It  is  also  quite  interesting  that  the  concrete  grade
influences  the  stress  level  s.  On  the  one  hand,  with  an
increase  in  the  concrete  grade,  its  tensile  strength  Rt

increases.  On  the  other  hand,  the  specific  heat  release
also  increases,  and  accordingly,  the  maximum  value  of
tensile temperature stresses also increases. The increase
in  heat  release  with  an  increase  in  the  concrete  grade
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occurs  faster  than  the  increase  in  tensile  strength.
Therefore,  with  an  increase  in  the  concrete  grade,  an
increase  in  the  stress  level  is  also  observed.

The thermal properties of the soil  base have a lesser
influence on the stress level. This can be explained by the
fact  that,  as  a  rule,  most  of  the  heat  exchange  occurs
along the upper surface of the foundation slab.

CONCLUSION
In this study, two models of artificial neural networks

were developed to predict the risk of early cracking during
the  construction  of  massive  monolithic  foundation  slabs
based on seven input parameters, including the thickness
of the foundation slab, environmental and heat exchange
conditions  on  the  upper  surface,  concrete  grade  by
compressive strength,  and thermal properties of  the soil
base.  The  first  model  allowed  for  predicting  the  risk  of
early  cracking  for  slow-hardening  concrete,  and  the
second  model  was  used  for  quick-hardening  concrete.
These  models  were  able  to  predict  the  early  crack
formation within the range of input parameters on which
they were trained. The thickness of the foundation slabs
could  range  from  0.7  to  3  m.  The  ambient  temperature
could  vary  from  +5  to  +35  °С,  and  the  concrete  grade
could  vary  from  B25  to  B45  according  to  Russian
standards. For the soil thermophysical characteristics and
the  heat  transfer  coefficient  on  the  upper  surface,  all
possible  values  were  considered  when  generating  the
training  dataset.

The  constructed  models  are  characterized  by  high
forecast quality. The mean-square error of the forecast is
close to zero, and the correlation coefficients between the
target and predicted stress level values are close to 1.

Furthermore,  the  significance  of  the  models'  input
parameters was assessed using the value fixation method.
It was found that the most significant parameter affecting
the risk of early cracking is the thickness of the foundation
slab.  It  was  found  that  for  slow-hardening  concrete,  the
average ambient temperature has a greater effect on the
stress level than for quick-hardening concrete. One of the
most significant parameters is the heat transfer coefficient
on  the  upper  surface  of  the  slab.  It  was  found  that  the
concrete  grade  has  an  effect  on  the  stress  level.  The
thermophysical  characteristics  of  the  soil  base  have
virtually  no  effect  on  the  risk  of  early  cracking.

It  should  be  noted  that  previously,  experimental
studies  were  only  conducted  on  the  influence  of  the
foundation slab thickness and the heat transfer coefficient
for the upper surface on the risk of early crack formation.
However, the influence of heat exchange conditions at the
boundary  between the  foundation  slab  and the  soil  base
has  not  been  previously  experimentally  studied.  In  the
future,  we  plan  to  conduct  such  a  study  to  confirm  the
obtained theoretical results.

In  this  study,  concrete  shrinkage  was  not  taken  into
account when training artificial intelligence models since
its  value  can  vary  significantly  depending  on  the
composition of the concrete. Our further research will also

be aimed at developing machine-learning models that take
this factor into account.
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