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Abstract:
Background: Artificial Neural Networks (ANN) can be a useful tool to assist in the design of reinforced concrete
structures. The aim of this paper is to develop artificial neural network models for predicting the required diameter of
eccentrically compressed concrete-filled steel tubular (CFST) columns and the wall thickness of the steel pipe.

Methods: Within the framework of the set goal, three models of ANN were developed. The first model predicts the
required cross-sectional diameter for the minimum pipe wall thickness. The second model solves the same problem
for the maximum possible wall thickness. The input parameters of the first two models are the axial force, bending
moment, strength characteristics of steel and concrete, column length, and a coefficient characterizing the share of
constant and long-term loads in the total load. The third model predicts the required wall thickness based on the
listed  parameters,  as  well  as  the  column  diameter.  Synthetic  data,  including  more  than  2  million  samples,  was
generated to train the models. The ANN architecture is a feedforward neural network with 2 hidden layers containing
16 neurons each. Machine learning models are implemented in the MATLAB environment.

Results: The trained models showed high performance in terms of mean squared error and correlation coefficient
between the target and predicted values of the output parameter. The importance of features was also assessed using
the  variable  fixation  method.  It  has  been  established  that  the  required  value  of  the  column  diameter  is  most
significantly influenced by the magnitude of the bending moment, axial force and column length. The required pipe
wall thickness is most influenced by the magnitude of internal forces and the diameter of the column.

Conclusion: The developed models of artificial neural networks are an effective and reliable tool that can help a civil
engineer in the design of buildings and structures that include CFST elements.

Keywords: Concrete-filled steel tubular columns, Artificial neural network, Feature importance, Inverse problem,
Mean squared error, Bearing capacity.
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1. INTRODUCTION
In  conditions  of  limited  urban  space,  modern

construction tends to increase the height of buildings and
floor spans, which dictates the need to use columns with
high load-bearing capacity. One of the promising solutions

to  this  problem  is  concrete-filled  steel  tubular  (CFST)
structures,  which  provide  an  optimal  combination  of
strength  and  functionality.  Circular  CFST  columns  have
high  axial  compressive  strength  [1],  which  is  their  main
advantage and allows them to be widely used in modern
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construction,  including  high-rise  buildings,  long-span
bridges,  underground  tunnels  and  unique  infrastructure
facilities [2-4].

The ability to maintain structural integrity and stability
in  emergency  situations  is  of  key  importance  for  CFST
structures  due  to  the  ability  to  effectively  absorb
significant amounts of energy during deformation [5, 6]. In
addition,  such  structures  help  reduce  the  impact  on  the
environment  due  to  the  rejection  of  the  traditional
formwork use, recycling of steel pipes and the use of high-
quality concrete with recycled aggregate [7].

Research  conducted  in  the  field  of  improving  the
calculation of  CFST columns can be divided into  several
categories: full-scale experiments, calculations performed
in accordance with national design standards (Eurocode4,
AISC  360-16,  SR  266.1325800.2016,  etc.),  numerical
calculations in finite element software packages (ABAQUS,
ANSYS,  etc.)  [8],  artificial  intelligence  (AI)  technologies
and research that combine the above methods.

Laboratory  experimental  studies  have  traditionally
been used to analyze the behavior of CFST columns, but
their application is limited by a narrow parameter range,
high cost, and significant labor costs. Kloppel and Gorder
[9]  conducted  the  first  experimental  studies  of  CFST
columns  in  the  1950s.  Since  then,  many  experimental
studies  have  been  conducted  to  analyze  the  structural
behavior  of  CFST  columns  [10-15].  The  geometric  and
physical-mechanical  data  obtained  from these  and  other
experimental  studies  are  actively  used  to  train  and  test
artificial  intelligence  models  aimed  at  predicting  the
design  results  of  CFST  columns.  AI  models  provide  a
better fit to experimental data and increased adaptability,
overcoming  the  limitations  of  traditional  nonlinear  or
analytical  models  [16].

Over the past 10 years, there has been an exponential
growth in publications on CFST calculation using machine
learning  (ML)  technologies.  It  can  be  confirmed  by  a
search  carried  out  in  the  Google  Scholar  scientometric
database by keywords “CFST” and “ Machine Learning.”

Numerous studies have demonstrated the effectiveness
of ANNs (artificial neural networks) technology in solving
complex problems in the field of CFST calculation.

Thus, the authors of papers [17, 18] investigated the
prediction of the bearing capacity for short CFST columns
under  axial  load using ANN based on a  large  amount  of
experimental data. Comparative analysis of ANN and the
empirical regression model revealed a clear advantage of
ANN.  R2  (the  coefficient  of  determination)  was  0.97  for
ANN  versus  0.926  for  the  regression  model,  and  MAPE
(mean absolute percentage error) reached 5.8% for ANN
and  13.2%  for  the  regression  model.  The  study
demonstrated  that  the  use  of  ANN  allows  for  achieving
greater  accuracy  in  predicting  the  bearing  capacity  of
CFST  columns  compared  to  the  previously  proposed
empirical  regression  model.  Du  Y  [19].  also  used  ANN
technology for rectangular columns with good results. The
mean  value  of  output  parameters  μ  was  equal  to  1.013,

which  shows  a  small  deviation  from the  expected  value.
The  coefficient  of  variation  CoV  was  equal  to  0.0702,
which indicates good stability of the model. These metrics
indicate  that  the  neural  network  model  has  stable
predictions  with  a  small  deviation  from  the  mean.

Le T [20]. used Gaussian process regression (GPR) to
predict the ultimate bearing capacity of rectangular CFST
columns.  As  shown  in  this  study,  this  method  provides
high  prediction  accuracy  for  the  following metrics:  R2  =
0.9956, RMSE = 154.66 (root mean square error), MAPE
=  7.54%,  the  values  of  which  indicate  high  agreement
between the predicted and experimental values.

Tran’s works [21-23] present approaches to predicting
the  strength  of  columns  using  ANN  models  and  a
polynomial  regression  model.  In  a  study  [23],  ANN
demonstrated  high  prediction  accuracy:  μ=1.05,  CoV
=0.07, R2 = 0.996, a20-index = 0.993 (accuracy index) and
MSE  =  0.011535.  These  indicators  confirm  the  minimal
variation and almost perfect correspondence of the model
predictions  to  the  actual  data.  At  the  same  time,  the
polynomial  regression  model  [21]  showed  the  following
metrics:  MAPE  =  22%,  MAE  =  559.7  (mean  absolute
error), RMSE = 789.8, R2  = 0.98, μ = 1.18, CoV = 0.25.
Although  the  coefficient  of  determination  remains  high,
the error and variance values indicate that this model is
less accurate than ANN.

The  model  based  on  genetic  programming  (GEP)  for
circular  CFST  columns  presented  in  a  study  [24]
demonstrates high prediction accuracy. The MAPE value
of 7.49% indicates a small relative error, which is a good
result for engineering calculations; the low RMSE value of
228 confirms that the model provides minimal deviations
between  predicted  and  actual  values.  These  indicators
show  that  the  GEP  method  can  be  effectively  used  to
predict  the  strength  of  columns  with  a  high  degree  of
reliability.

In a study [25], a model for calculating circular CFST
column based on GEP is  presented,  which demonstrated
the following accuracy metrics: RMSE = 258, R2  = 0.98,
MAE  =  138.7,  μ  =  1.2,  and  CoV  =  0.1.  These  metrics
indicate  the  high  accuracy  of  the  model:  a  small  RMSE
and low MAE indicate minimal deviations between actual
and predicted values. The determination coefficient shows
that the model explains 98% of the data variation, which
confirms its reliability. The μ and CoV values indicate good
stability and predictability of the model. Overall, GEP [25]
has proven itself to be an effective method for forecasting
with a high degree of accuracy and reliability.

Hybrid  methods  such  as  genetic  algorithm  (GA)  and
GEP  were  used  to  analyze  columns  of  different  shapes
[26].  These  methods  achieved  high  results,  with  a
determination  coefficient  of  0.98  and  a  variation
coefficient  within  13%–15%.  These  results  indicate  high
accuracy and stability of  the forecast when using hybrid
methods to evaluate column characteristics.
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In  another  work  [27],  the  author  considers  two
prediction methods for  circular  columns:  GEP and ANN,
each  of  which  demonstrated  its  own  characteristics  and
advantages in assessing the strength of columns.

GEP showed the following results: μ = 0.98 indicates
high  accuracy  of  the  model,  but  with  some variations  in
the  data,  which  is  confirmed  by  CoV  =  0.22.  The
coefficient  of  determination  (0.98)  confirms  its  high
accuracy. However, the values of MAE = 242 and RMSE =
384 show that this model may require further optimization
to improve the accuracy of predictions. At the same time,
ANN demonstrated higher indicators: μ = 0.99 and CoV =
0.13, showing greater stability and accuracy of the model,
with minimal deviations from the actual values, R2 = 0.99
indicates an almost perfect match between the predictions
and real data. The indicators MAE = 134 and RMSE = 205
confirm that the neural network more accurately predicts
the  strength  of  circular  columns,  providing  significantly
smaller errors compared to GEP.

In a study [28], the strength analysis of CFST columns
was  conducted  using  various  machine  learning  models,
including GPR-based regression, symbolic regression (SR),
support vector regression (SVR), ANNs, extended gradient
boosting  (XGBoost),  categorical  optimized  boosting
(CatBoost),  particle  swarm  optimized  support  vector
regression (PSVR), random Forest and LightGBM . To test
the  accuracy  and  reliability  of  these  approaches,  the
predictions obtained with their help were compared with
the results calculated using national design codes.

The  results  of  the  study  [28]  demonstrated  that  the
CatBoost,  GPR,  PSVR  and  XGBoost  models  showed  the
highest accuracy and reliability for estimating the strength
of  CFST  columns.  For  example,  when  analyzing  the
strength of circular columns, the accuracy metrics confirm
the superiority of these methods. The average prediction
values  for  CatBoost,  GPR  and  PSVR  were  close  to  one
(1.0),  indicating  the  high  accuracy  of  the  models.  The
coefficient of variation, which characterizes the stability of
the model, was minimal for CatBoost and GPR (0.017 and
0.026, respectively), indicating the high reliability of their
predictions. The determination coefficient (R2) is close to
1, which confirms the exact match between the predicted
and experimental data. The average absolute percentage
error  for  CatBoost  was  only  0.711%,  and  the  root  mean
square  error  was  minimal  (89.9).  In  addition,  the  a20
index  (the  proportion  of  forecasts  with  an  error  of  less
than  20%)  for  CatBoost  and  GPR  reached  its  maximum
value of 1.0.

The multi-objective optimization approach presented in
the  study  [29]  determines  the  optimal  parameters  for
eccentrically  loaded  short  CFST  columns  with  circular
cross-sections using linear regression models and genetic
algorithms  to  optimize  parameters  such  as  diameter,
thickness,  and  compressive  strength  while  constraining
the  upper  and  lower  bounds  of  these  parameters  in
accordance with the international standards AISC 360-16
and  Eurocode4.  By  minimizing  the  mean  square  error
between the predicted and actual values, the optimization

platform developed in the MATLAB environment offers a
tool  for  designing  efficient  and  durable  CFST  columns,
enhancing the overall reliability of structural design in the
construction industry.

In studies of CFST column strength prediction, ANN,
GEP,  regression  models,  SVM,  CatBoost,  and  GPR  were
used. ANN provides high accuracy (R2 > 0.95), GEP allows
flexible  identification  of  analytical  dependencies,
regression  models  are  easy  to  implement  but  limited  in
complex nonlinear dependencies, and SVM demonstrates
efficiency when working with high-dimensional  data and
resistance  to  overfitting.  CatBoost  and  GPR  showed  the
highest accuracy, minimum average absolute percentage
error,  and high stability  of  forecasts,  which makes them
the most promising for engineering practice.

The conducted literature review shows that the aim of
most studies is to determine the bearing capacity of CFST
columns. For a civil engineer, an equally important task is
to  determine  the  required  cross-section  dimensions  of
columns when the values of internal forces are known. The
solution to this problem is usually carried out by selection
through  a  variety  of  options,  which  is  a  rather  labor-
intensive  task  and  does  not  always  lead  to  the  most
optimal  result.  Selection  of  the  CFST  columns  cross-
section  dimensions  using  machine  learning  methods  has
not been performed before. The purpose of this paper is to
develop artificial neural network models for predicting the
required diameter of  eccentrically  compressed concrete-
filled steel tubular (CFST) columns and the wall thickness
of the steel pipe.

2. MATERIALS AND METHODS
The  object  of  study  in  this  article  is  eccentrically

compressed concrete-filled steel tubular (CFST) columns
without bar reinforcement inside the concrete core.

To  solve  the  problem of  selecting  the  cross-sectional
dimensions  of  CFST  columns,  three  models  of  artificial
neural networks were developed. The input parameters of
the first model are the following values:

1. Compressive axial force N, kN;
2. Bending moment M, kN ∙ m ;
3. Yield strength of steel Ry, MPa;
4. Compressive strength of concrete Rb, MPa;
5. Design length of column l, m;
6. A coefficient φl that takes into account the influence

of the load duration and is determined by the formula (a):

(a)

where  M1  and  Ml1  are  respectively  bending  moments
from  the  action  of  the  full  load  and  from  the  action  of
constant and long-term loads.

The  first  model  predicts  the  required  value  of  the
CFST  column  outer  diameter  Dp1  with  a  minimum  wall
thickness  of  a  steel  pipe  according  to  the  Russian
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assortment  “GOST  10704-91.  Electrically  welded  steel
line-weld tubes. Range”. The second model has the same
input parameters but, unlike the first model, predicts the
required  value  of  the  outer  diameter  Dp2  when  the  pipe
wall thickness is maximum. When the pipe wall thickness
takes  the  minimum  possible  value,  the  section  diameter
will  be  the  maximum,  but  we  will  have  the  most
economical  design  in  terms  of  cost.  When  the  pipe  wall
thickness takes the maximum possible value according to
the assortment, the pipe diameter will be minimum. Such
a  design  will  have  the  highest  cost,  but  it  will  be
distinguished  by  its  compactness.

When  designing,  a  balance  is  often  needed  between
the cost of the structure and its dimensions. Therefore, we
also  developed  a  third  model  of  an  artificial  neural

network,  which uses  parameters  1-4,  6,  the  value  of  the
outer  diameter  Dp  in  the  range  from  Dp2  to  Dp1,  and  the
ratio  l/Dp.  Based  on  seven  input  parameters,  the  third
neural  network  determines  the  required  pipe  wall
thickness tp . A feedforward neural network with 2 hidden
layers  and  16  neurons  on  each  layer  was  chosen  as  the
ANN architecture. This architecture provided an optimal
balance between the accuracy of the results and the cost
of machine time for training. Single-layer models, as well
as models with a smaller number of neurons, led to larger
prediction  errors.  The  architecture  of  the  developed
artificial neural networks is shown in Figs. (1 and 2. The
activation function of the hidden layers neurons was taken
as a hyperbolic tangent.

Fig. (1). Architecture of artificial neural networks for predicting the required column diameter.

Fig. (2). Architecture of artificial neural network for predicting the required pipe wall thickness.
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Table 1. Minimum and maximum wall thicknesses in accordance with GOST 10704-91.

No. Dp, mm Min tp, mm Max tp, mm

1 102 1.8 5.5
2 108 1.8 5.5
3 114 1.8 5.5
4 127 1.8 5.5
5 133 1.8 5.5
6 140 1.8 5.5
7 152 1.8 5.5
8 159 1.8 8
9 168 1.8 8
10 177.8 1.8 8
11 180 4 5
12 193.7 2 8
13 219 2.5 22
14 244.5 3 22
15 273 3.5 22
16 325 4 22
17 355.6 4 22
18 377 4 22
19 406.4 4 22
20 426 4 22
21 478 5 12
22 508 4.5 24
23 530 5 20
24 630 7 24
25 720 7 30
26 820 7 30
27 920 7 20
28 1020 8 32
29 1120 8 20
30 1220 9 32
31 1420 10 32

The  models  were  trained  using  synthetic  data
generated based on the provisions of Russian design codes
for steel-reinforced concrete structures SR 266. 1325 800.
2016.  Synthetic  data  were  used  because  experimental
data  do  not  allow  to  cover  the  entire  possible  range  of
input  parameters.  Also,  most  of  the  experiments  to
determine  the  bearing  capacity  of  CFST  columns  were
performed  on  small-diameter  samples.  When  forming
training  datasets,  the  value  Dp  varied  from  102  to  1420
mm. The diameter values used in training the models, as
well  as  the  corresponding  maximum  and  minimum  wall
thicknesses  according  to  GOST  10704-91,  are  given  in
Table  1.

To ensure that the wall thickness is a non-decreasing
function  of  the  diameter,  when  forming  the  training
dataset for model 1, the minimum thickness in row 11 was
changed  from  4  to  2  mm.  For  a  similar  purpose,  when
forming  the  training  dataset  for  model  2,  the  maximum
thickness in row 11 was changed from 5 to 8 mm, in row
21 from 12 to 22 mm, in row 23 from 20 to 24 mm, in row
27 from 20 to 30 mm, and in row 29 from 20 to 32 mm.
The values that were adjusted are highlighted in bold in
Table 1.

When  forming  training  datasets  for  models  1  and  2,
the value of concrete compressive strength Rb varied from
10  to  65  MPa  with  a  step  of  13.75  MPa  (5  different
values), the yield strength of steel Ry  varied from 240 to
440 MPa with a step of 50 MPa (5 different values). The
design  column  length  l  for  each  diameter  value  varied
from 10∙Dp up to 30∙Dp in increments of 2∙Dp (11 different
values). The coefficient φl varied from 1 to 2 with a step of
0.2 (6 different values).

The  ultimate  bending  moment  for  pure  bending  was
determined according to  SR266.1325800.2016 using the
formula (Eq. 1):

(1)

where  rb  =  (Dp-2tp)  /  2  is  the  radius  of  the  concrete
core, rp = (Dp-tp) / 2 is the radius of the middle surface of
the pipe, Ap = π Dptp and is the cross-sectional area of the
steel pipe.

The angle α in Eq. 1 was determined from the solution
of the equation (Eq. 2):
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(2)

In  addition  to  the  ultimate  bending  moment,  the
ultimate  axial  force  Nult0  under  central  compression  was
determined  without  taking  into  account  random
eccentricities and element slenderness using the formula
(Eq. 3):

(3)

where Rpc = 0.75 Ry is the design strength of the pipe
material  under  central  compression,  taking  into  account
its operation in a biaxial stress state, Ab = π ⋅0.75 rb

2 is the
area of the concrete core, Rbp is the design strength of the
concrete  taking  into  account  the  effect  of  lateral
compression, determined under central compression using
the formula (Eq. 4):

(4)

Next, the step for the bending moment was selected Δ
M = Mult0 / (nM - 1) , where nM is the number of calculated
values  of  the  bending  moment.  For  each  value  of  the
bending moment M in the range from 0 to Mult0 with a step
ΔM, the corresponding axial force at which the limit state
occurs was calculated.

The determination of the ultimate axial force at a given
bending moment was performed using a stepwise increase
in  the  value  of  N  from  0  to  Nult0  in  1000  steps.  The
calculation  was  performed  according  to  SR
266.1325800.2016  using  the  following  algorithm:

1. At a given value M, the eccentricity of the axial force
e0 = M / N was determined;

2. Additional random eccentricity ea was calculated as
the largest of three values (Eq. 5):

(5)

3. The coefficient η, taking into account the increase in
eccentricity  due  to  the  deflection  of  the  element,  was
determined  using  the  formula  (Eq.  6):

(6)

where Ncr = π2 ⋅ / l2 is the conditional critical force, D is
reduced  cross-sectional  rigidity,  determined  by  the
formula  (Eq.  7):

(7)

where  is the concrete core moment of

inertia,   is  the  steel  pipe  moment  of
inertia,  Es  =  2.06⋅105  MPa  is  the  steel  modulus  of
elasticity,  Eb1  is  the  long-term  concrete  modulus  of
elasticity,  determined  by  the  formula  (Eq.  8):

(8)

where Eb0  is the concrete initial modulus of elasticity
φb, cr is the creep coefficient of concrete.

The  initial  concrete  modulus  of  elasticity  was
determined  based  on  the  paper  [30]  as  a  function  of  its
compressive strength using the formula (Eq. 9):

(9)

Сreep  coefficient  φb,  cr  was  determined  using  the
empirical  formula  [31]  (Eq.  10):

(10)

Coefficients  ks  and  kb  in  Eq.  7  take  into  account  the
plastic work of concrete and steel pipe. The coefficient ks

is taken equal to 0.7, and the coefficient kb  is calculated
using the formula (Eq. 11):

(11)

where δe = (e0 + ea) / Dp is the relative eccentricity of
the  axial  force.  At  δe  <  0.15,  the  value  0.15  should  be
substituted into Eq. 11.

4.  The  calculated  eccentricity  of  the  axial  force  was
determined (Eq. 12):

(12)

5. The design strength of concrete Rbp  and steel pipe
Rpc  under  compression  as  part  of  a  reinforced  concrete
element was determined using the formulas (Eq. 13):

(13)

where

6.  The  angle  α,  which  determines  the  size  of  the
compressed  zone  of  concrete  in  the  limit  state,  was
calculated from the solution of the nonlinear equation (Eq.
14):

(14)
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7. The ultimate bending moment Mult was determined
using the formula (Eq. 15):

(15)

When  the  product  N⋅e  exceeds  the  value  Mult  at  the
current load step, then the value N is taken as the ultimate
value  and  written  to  the  training  dataset  as  an  input

parameter. The current value of the column Dp diameter is
written  to  the  training  dataset  as  an  output  parameter.
The number of calculated values of the bending moment
nM  when forming  the  training  datasets  for  the  first  and
second models was taken to be 41. Thus, the total volume
of  the  training  datasets  for  the  first  and  second  models
was  31∙5∙5∙41∙11∙6  =  2097150  numerical  experiments.
Fragments of the generated data for models 1 and 2 are
given in Tables 2 and 3.

Table 2. Fragment of the generated dataset for model 1, predicting the column diameter with a minimum pipe
wall thickness.

No N, kN M, kN ∙ m Ry , MPa Rb , MPa l, m φl Dp1, mm

1 116.66 0.00 240 10 1.02 1 102
2 113.70 0.12 240 10 1.02 1 102
3 110.99 0.25 240 10 1.02 1 102
4 108.28 0.37 240 10 1.02 1 102
5 105.56 0.49 240 10 1.02 1 102
6 102.36 0.62 240 10 1.02 1 102
7 99.15 0.74 240 10 1.02 1 102
8 95.94 0.87 240 10 1.02 1 102
9 92.49 0.99 240 10 1.02 1 102
10 89.28 1.11 240 10 1.02 1 102
… … … … … … … …

2097141 2613.60 9176.55 440 65 42.6 2 1420
2097142 2364.69 9472.57 440 65 42.6 2 1420
2097143 2115.77 9768.59 440 65 42.6 2 1420
2097144 1866.86 10064.61 440 65 42.6 2 1420
2097145 1493.49 10360.62 440 65 42.6 2 1420
2097146 1244.57 10656.64 440 65 42.6 2 1420
2097147 995.66 10952.66 440 65 42.6 2 1420
2097148 622.29 11248.68 440 65 42.6 2 1420
2097149 373.37 11544.70 440 65 42.6 2 1420
2097150 0.00 11840.71 440 65 42.6 2 1420

Table 3. Fragment of the generated dataset for model 2, predicting the column diameter at maximum pipe wall
thickness.

No N, kN M, kN ∙ m Ry , MPa Rb , MPa l, m φl Dp2, mm

1 262.64 0.00 240 10 1.02 1 102
2 255.79 0.34 240 10 1.02 1 102
3 248.37 0.68 240 10 1.02 1 102
4 241.52 1.02 240 10 1.02 1 102
5 234.66 1.35 240 10 1.02 1 102
6 227.24 1.69 240 10 1.02 1 102
7 219.82 2.03 240 10 1.02 1 102
8 212.97 2.37 240 10 1.02 1 102
9 206.12 2.71 240 10 1.02 1 102
10 199.27 3.05 240 10 1.02 1 102
… … … … … … … …

2097141 6838.73 26092.78 440 65 42.6 2 1420
2097142 6154.86 26934.48 440 65 42.6 2 1420
2097143 5470.99 27776.18 440 65 42.6 2 1420
2097144 4787.11 28617.89 440 65 42.6 2 1420
2097145 3932.27 29459.59 440 65 42.6 2 1420
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No N, kN M, kN ∙ m Ry , MPa Rb , MPa l, m φl Dp2, mm

2097146 3248.40 30301.29 440 65 42.6 2 1420
2097147 2393.56 31142.99 440 65 42.6 2 1420
2097148 1709.68 31984.70 440 65 42.6 2 1420
2097149 854.84 32826.40 440 65 42.6 2 1420
2097150 0.00 33668.10 440 65 42.6 2 1420

Table  4.  Fragment  of  the  training  dataset  for  model  3,  predicting  the  required  wall  thickness  for  a  given
diameter Dp [ Dp2 ; Dp1 ].

No N, kN M, kN ∙ m Ry , MPa Rb , MPa φ l Dp , mm tp , mm

1 116.66 0.00 240 10 10 1 102 1.8
2 105.56 0.49 240 10 10 1 102 1.8
3 92.49 0.99 240 10 10 1 102 1.8
4 79.91 1.48 240 10 10 1 102 1.8
5 67.83 1.98 240 10 10 1 102 1.8
6 55.99 2.47 240 10 10 1 102 1.8
7 44.64 2.97 240 10 10 1 102 1.8
8 33.30 3.46 240 10 10 1 102 1.8
9 22.20 3.96 240 10 10 1 102 1.8
10 11.35 4.45 240 10 10 1 102 1.8
… … … … … … … … …

2045991 24961.37 3366.81 440 65 30 2 1420 32
2045992 22225.88 6733.62 440 65 30 2 1420 32
2045993 19661.35 10100.43 440 65 30 2 1420 32
2045994 16925.86 13467.24 440 65 30 2 1420 32
2045995 14361.34 16834.05 440 65 30 2 1420 32
2045996 11796.81 20200.86 440 65 30 2 1420 32
2045997 9061.32 23567.67 440 65 30 2 1420 32
2045998 6154.86 26934.48 440 65 30 2 1420 32
2045999 3248.40 30301.29 440 65 30 2 1420 32
2046000 0.00 33668.10 440 65 30 2 1420 32

When forming the training dataset for the third model
predicting the required wall thickness, Table 1 was used
in  its  original  form  without  adjustments.  The  range  of
input  parameters  was  the  same  as  for  models  1  and  2.
Since the third model contained one more parameter than
models 1 and 2,  the number of  calculated values for the
parameter  φl  was  reduced  to  5,  and  the  number  of
calculated values of the bending moment was reduced to
11. The parameter l/Dp varied from 10 to 30 with a step of
4 (6 different values). The wall thickness for each diameter
in  the  assortment  varied  from  tp,min  to  tp,max  with  a  step

 (8 different values). The total volume of the
training  dataset  for  model  3  was  31∙5∙5∙11∙6∙5∙8  =
2046000  numerical  experiments.  A  fragment  of  the
training  dataset  for  model  3  is  given  in  Table  4.

Artificial neural network models were implemented in
the MATLAB environment. During training, the generated

datasets were randomly divided into three parts: “Train”,
“Validation”  and  “Test”  in  the  proportion  of  70%:  15%:
15%. The mean squared error (MSE) value was adopted as
a metric of training quality. Minimization of the MSE value
was  performed  using  the  Levenberg-Marquardt
optimization  algorithm.  This  algorithm  was  chosen
because  it  allows  achieving  the  lowest  neural  network
error, often with the lowest time costs [32]. The algorithm
provides  an  acceptable  compromise  between  the
convergence rate inherent in Newton algorithms and the
stability inherent in the gradient descent algorithm [33].
The  number  of  iterations  in  the  training  process  for  all
models was taken to be 1000 (Supplementary dataset 1-3).

3. RESULTS AND DISCUSSION
Figs. (3-5) shows the training performance graphs for

models 1-3. Trained models are characterized by low mean
squared error values, which are 8.96 mm2 for model 1, 7.3
mm2 for model 2 and 0.03 mm2 for model 3.

(Table 3) contd.....
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Fig. (3). Training performance graph for model 1.

Fig. (4). Training performance graph for model 2.
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Fig. (5). Training performance graph for model 3.

Figs.  (6-7)  show the regression plots  for  models  1-2.
The target  values T  of  the column diameters are plotted
along the abscissa axis, and the values Y predicted by the
neural  network  are  plotted  along  the  ordinate  axis.  All

points  on  the  graphs  lie  at  a  slight  distance  from  the
straight line Y = T. The correlation coefficients R between
the target and predicted values differ slightly from R = 1
for the “Train”, “Validation”, and “Test” samples, as well
as for the entire dataset as a whole.

Fig. (6). Regression plots for model 1.
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Fig. (7). Regression plots for model 2.

Fig. (8). Regression plots for model 3.

Table 5. Feature importance for models 1 and 2.

Input parameter

N M Ry Rb l φl

Importance, %
Model 1 58.6 128.39 4.77 3.03 33.78 0.99
Model 2 51.44 118.1 6.41 2.02 100.17 0.29
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Table 6. Feature importance for model 3.

Input Parameter

N M Ry Rb l/Dp φl Dp

Importance, % 338.41 385.26 15.36 7.48 9.19 2.06 59.35

Fig.  (8)  shows  the  regression  plots  for  model  3,
predicting the required pipe wall thickness. In contrast to
Figs. (6-7), the scatter of data relative to the straight line
Y  = T  is more pronounced. This can be explained by the
fact that model 3 includes one more input parameter than
models  1  and 2,  with  approximately  the  same volume of
the  training  dataset.  Nevertheless,  the  correlation
coefficients  between  the  target  and  predicted  wall
thickness  values  are  also  close  to  1.  In  the  practical
application of model 3, the engineer should round off the
wall thickness value predicted by the model to the nearest
one according to the assortment.

Thus,  the  developed artificial  neural  network  models
can act as a reliable and effective tool for determining the
required cross-sectional size of eccentrically compressed
CFST columns.

Machine learning methods, including artificial neural
networks,  also  allow  us  to  evaluate  the  importance  of
features.  We  chose  the  method  of  fixing  values  as  a
method  for  evaluating  the  feature's  importance.  The
essence  of  this  method  is  to  calculate  the  relative
difference between the value at the output of the neural
network with a fixed value of the feature and the value at
the output determined with a full set of features. As a fixed
value  of  the  feature,  its  average  value  for  the  entire
sample  is  selected.

Table 5 shows the importance of the input parameters
in percentage for  models  1  and 2.  This  table  shows that
the values of internal forces and the design length of the
element exert the greatest influence on the required value
of  the  column  diameter.  The  strength  characteristics  of
steel  and  concrete  have  a  lesser  influence  on  the  cross-
sectional dimensions, and the influence of the coefficient
φl is the most insignificant.

Table 6 shows the importance of the input parameters
for model 3. Here, the least influence of the parameter φl

on  the  pipe  wall  thickness  is  also  observed.  The
parameters that most significantly influence the required
pipe wall thickness include the values of internal forces, as
well as the outer diameter of the column.

Feature importance analysis allows civil engineers to
identify  those  parameters  that  can  be  ignored  during
analysis in the first approximation. In our case, this is the
φl coefficient, which characterizes the share of long-term
loads in the total load on the column.

CONCLUSION
Three models of  artificial  neural networks have been

developed  to  predict  the  cross-sectional  dimensions  of
eccentrically compressed CFST columns. The first model,
based  on  the  magnitude  of  internal  forces,  material

characteristics,  design  length,  and  data  on  the  share  of
long-term  loads  in  the  total  load,  predicts  what  cross-
sectional diameter is required with a minimum pipe wall
thickness according to the assortment of electric-welded
straight-seam  pipes.  The  second  model  predicts  the
required  diameter  with  the  maximum  possible  wall
thickness.  Having  a  possible  range  of  column  diameter
variation,  the  third  machine-learning  model  can  then
determine  what  wall  thickness  is  required  for  any
diameter from the obtained range. The developed models
have  shown  high  prediction  efficiency  based  on  MSE
indicators and the correlation coefficient between target
and  predicted  values.  The  reliability  of  the  results  is
ensured by the large size of the training datasets, which
included  more  than  2  million  samples.  The  proposed
models  can  be  integrated  into  the  form  of  utilities  into
existing  software  packages  for  designing  building
structures  (CivilFEM,  LIRA-SAPR,  SCAD,  etc.)

The  importance  of  the  features  was  also  assessed
using the variable fixation method. It was found that the
required column diameter is most significantly affected by
the  values  of  internal  forces  and  its  design  length.  The
strength characteristics of concrete and steel have a lesser
effect on the cross-sectional dimensions. The required wall
thickness of a steel pipe is most significantly affected by
the value of the axial force and bending moment, as well
as the cross-sectional diameter.

In this paper, only CFST columns with a circular cross-
section were considered. However, at large eccentricities
of  axial  forces,  columns with a rectangular cross-section
work  more  effectively  on  eccentric  compression  [34-36].
The prospect of further research may be the development
of  machine  learning  models  for  selecting  the  cross-
sectional  dimensions  of  rectangular  CFST  columns.
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