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Abstract: With a suitable non-dimensionalization, the available charts for normal depth computation in parabolic sections 

are reduced to a single dimensionless curve when either Manning's or Chezy's resistance equation is used. Moreover, sim-

ple approximate solutions are presented to compute normal depth with a quite adequate degree of accuracy. Upon rear-

ranging the critical-flow criterion equation, relevant explicit relationships are derived for this state of flow. The procedure 

of normal and critical depths calculation is clearly described through some examples.  

1. INTRODUCTION 

 Normal depth plays a significant role in the design of 
open channels and in the analysis of the non-uniform flow as 
well. Searching for earlier literature, one can find some 
methods of uniform flow computation. For the most part, the 
well known Manning and Chezy resistance equations are 
extensively used. Due to their implicit form, graphical meth-
ods have been presented in the past for uniform flow compu-
tation in the common rectangular, trapezoidal, triangular and 
circular cross sections [1-3]. For these, explicit solutions for 
normal depth have been proposed afterwards [4, 5]. The 
most relevant recent study is certainly that of Swamee and 
Rathie [6], in which exact analytical equations for normal 
depth have been reported for rectangular, trapezoidal and 
circular cross sections. For round-bottomed triangular, 
round-cornered rectangular and parabolic cross sections, 
exact or approximate solutions are not yet available. For 
these sections, graphical methods have been proposed by 
Babaeyan-Koopaei [7], using the Manning's resistance equa-
tion. The form of the considered parabola is defined by: 

2
Y aX=              (1) 

in which a is the shape factor of the parabolic channel. By 
the use of Eq. (1), the top width T, water area A and wetted 
perimeter P are given in terms of the maximum channel 
depth h and maximum permissible side slope 1/Z . These are 
expressed respectively as:  

4T Zh=               (2) 
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 Furthermore, from Manning equation, the following 
identities are deduced: 
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where n is the Manning roughness coefficient, Q is the dis-
charge, S is the channel slope and R is the hydraulic radius. 
Using Eqs. (2), (3) and (4), the parameter K can be expressed 
as : 

  
K = 3.23044( y / T )

8/3
Z 1+ Z

2
+ Z ln Z

1
+ 1+ Z

2
2/3

  (6) 

 With the aid of Eqs. (5) and (6) dimensionless curves 

showing the variation of / ( , )y T f K Z= have been plotted. 

These permit the determination of the relative normal 

depth /ny T , provided K and Z are given. 

 This paper aims to present a new graphical solution for 
normal depth in parabolic sections by the only use of a single 
curve. This was obtained with the commonly Manning and 
Chezy resistance equations in which a new parameter is in-
troduced. Furthermore, approximate solutions for normal 
depth are proposed and new relations for the critical flow 
characteristics are presented.  

2. GEOMETRICAL CONSIDERATIONS 

 The parabola defined by Eq. (1) is represented in Fig. (1) 

for 0X , where X is the longitudinal coordinate. Three 

points are particularly considered namely: 

( / 2, )m mP T y which is well defined by the geometrical ele-

ments 
m

T and my of the parabolic channel, 

( / 2, )n nN T y which is connected to the uniform flow charac-

terized by the top width 
n

T and the normal depth ny , and 

( / 2, )o oE T y which translate the fact that the top width 
o

T is 

equal to the depth oy . Otherwise, the corresponding water 

area 
o

A is inscribed in a square of length side o oy T= such 

that the aspect ratio / 1o o oy T= = . This special case is one 

and only for a given parabola. For a slender parabola the 

point E is located below the point P corresponding 
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to o my y< , whereas o my y>  for a widened or a much more 

opened parabola.  

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (1). Definition sketch of a parabolic channel flow. 

For ( / 2, )m mP T y , Eq. (1) gives ( )2/ 2m my a T= or : 

2
4 /m ma y T=               (7) 

 Inserting Eq. (7) into Eq. (1), results in : 

24
Y X

B

=              (8) 

in which : 

2
/m mB T y=              (9) 

 The parameter B is thus a linear dimension and it is well 

defined by the geometric elements 
m

T and my of the para-

bolic channel.  

For ( / 2, )n nN T y and o o( / 2, )E T T , Eq. (8) gives respectively:  

2
/n nB T y=            (10) 

o
B T=             (11) 

Equation (11) indicates that the parameter B is also equal to 

the length side of the square defined in Fig. (1), such 

that
o o

y T B= = . 

3. CHARACTERISTICS OF UNIFORM FLOW IN 
PARABOLIC SECTIONS 

 Assume
n

as the aspect ratio of the normal water 

area
n

A , defined by: 

/n n ny T=            (12) 

With the aid of Eqs. (10) and (12),
n

can be written as :  

/
n n

T B=            (13) 

Eliminating 
n

T between Eqs. (10) and (12), 
n

can be also 

written as :  

/n ny B=            (14) 

The normal depth ny is thus:  

2

n ny B=            (15) 

For a parabolic channel, the normal water area 
n

A is given 

by: 

2

3
n n nA T y=             (16) 

which can be written, with the aid of Eqs. (13) and (15), as : 

2 32

3
n n

A B=            (17) 

On the other hand, the normal wetted perimeter 
n

P  is given 

by: 

  

P
n
=

T
n

2

8y
n

1+
2
+ ln + 1+

2
        (18) 

in which : 

4 /n ny T=            (19) 

or : 

4
n

=            (20) 

Inserting Eqs. (10) and (20) into Eq. (18), yields : 

  

P
n
=

B

8

4
n

1+ 16
n

2
+ ln 4

n
+ 1+ 16

n

2
       (21) 

With the aid of Eqs. (17) and (21), the normal hydraulic ra-

dius 
n

R , defined as the ratio of the normal water area 
n

A  to 

the normal wetted perimeter
n

P , is thus : 

  

R
n
=

16

3

B
n

3

4
n

1+ 16
n

2
+ ln 4

n
+ 1+ 16

n

2

       (22) 

4. NORMAL DEPTH COMPUTATION 

4.1. Manning Equation 

 Manning's equation is given by:  

2 / 31

n nQ A R S
n

=           (23) 

which can be written, using Eqs. (17) and (22), as follows : 

8 / 3
( )nQ B S

n
=           (24) 

where 
5 / 3

constant 4 (2 / 3) 2.035= =  and ( )
n

is de-

fined by : 
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(

n
) =

n

5
4

n
1+ 16

n

2
+ ln 4

n
+ 1+ 16

n

2
2/3

    (25) 

In terms of non-dimensional parameters, Eq. (24) is changed 

to : 

( )
n

M =            (26) 

in which :  

8 / 3

nQ
M

B S

=            (27) 

 Notice that ( 0.29) 1
n

M = = , corresponding 

to n ny T B= = . The implicit relationship (26) is plotted in 

Fig. (2) showing the relation between 
n

and M .  

 

 

 

 

 

 

 

 

Fig. (2). Dimensionless curve for normal depth computation in 

parabolic cross sections, using Manning resistance equation. 

 The normal depth ny  can be then evaluated with respect 

to the following four steps: 

i. Knowing the geometric elements 
m

T and my  of the 

considered parabolic channel, B is then computed us-

ing Eq. (9).  

ii. With Q, B, S and n, Eq. (27) gives the value of M and, 

hence, M . 

iii. Using M , one can read from Fig. (2) the aspect ra-

tio
n

. 

iv. Knowing 
n

and B, the normal depth ny follows then 

immediately from Eq. (15).  

4.1.1. Approximate Solutions 

 The aspect ratio ( )
n

M of the implicit relation (26) can be 
reasonably written as the following power law:  

n
M=            (28) 

 The parameters and have been evaluated and re-
ported in Table 1, depending on the limitations of M. Also 
indicated is the maximum deviation between Eqs. (26) and 
(28). As it can be seen, Eq. (28) is quiet satisfactory for prac-
tical applications.  

4.1.2. Example 

 A parabolic channel with the geometric elements 5
m

T m=  

and 2.5my m= , a slope 0.001S = and 
1/ 3

0.025 /n s m= , carries 

a discharge
3

5 /Q m s= . Compute the normal depth ny  and 

the normal top width
n

T using Manning's resistance equation.  

i. According to Eq. (9), the parameter B is : 

 
2 2

/ 5 / 2.5 10m mB T y m= = = . With respect to Eq. (8), the 

equation of the parabola is thus : 

 
2 2

(4 / ) 0.4Y B X X= =  

ii. Applying Eq. (27), the parameter M is then : 

 
8 / 3

8 / 3
0.025 5 /(10 0.001) 0.00851

nQ
M

B S

= = , corre-

sponding to 0.0923M =  

i. With 0.0923M = , one can read from Fig. 

(2) 0.41
n

. This can be obtained using Eq. (28), along 

with Table 1, whence : 

0.25 0.25
1.35 1.35 0.00851 0.41

n
M= = =  

ii. From Eq. (15), the normal depth ny is thus : 

2 2
10 0.41 1.681n ny B m= =  

iii. Eq. (13) gives the top width 
n

T as : 

10 0.41 4.10
n n

T B m= = =  

 4.2. Chezy Equation 
 Chézy's resistance equation is given by: 

n nQ CA R S=            (29) 

in which C is the Chezy's roughness coefficient. With the aid 

of Eqs. (17) and (22), Eq. (29) can be written as : 

Table 1. Values of and  for Computation of the Aspect Ratio 
 n

by Eq. (28) 

M 
 n

   
Maximum deviation 

(%) 

0.00114M  

0.00114 0.29M<  

0.29 1484.6M<  

n  0.25 

0.25 < n  1 

1 < n  10 

1.197 

1.350 

1.388 

0.232 

0.250 

0.270 

 0.7 

 1 

 0.6 



12    The Open Civil Engineering Journal, 2008, Volume 2 Achour and Khattaoui 

5 / 2
( )nQ CB S=           (30) 

where constant 8 /(3 3) 1.539= = and ( )
n

is defined by : 

  
(

n
) =

n

9/2
4

n
1+ 16

n

2
+ ln 4

n
+ 1+ 16

n

2
1/2

  (31) 

 In terms of non-dimensional parameters, Eq. (30) can be 

written as follows : 

*
( )

n
C =            (32) 

in which :  

*

5 / 2

Q
C

CB S

=            (33) 

 Notice that
*

( 0.357) 1
n

C = = . The implicit relationship 

(32) is plotted in Fig. (3) showing the variation 

in
n

with
*

C . The normal depth can be then graphically 

computed, following the same steps than those indicated in 

paragraph 4.1, once 
*

C is determined. 

 

 

 

 

 

 

 

 

Fig. (3). Dimensionless curve for normal depth computation in 

parabolic cross sections, using Chezy's resistance equation. 

4.2.1. Approximate Solutions 

 The aspect ratio 
*

( )
n

C of the implicit relationship (32) 

can be directly computed by the use of the following power 

law:  

*

n
C=            (34) 

 The numerical values of and are reported in Table 2 
with respect to the limitations of

*
C . The maximum devia-

tion between Eqs. (32) and (34) is also indicated. As it can 

be seen, the effect of errors involved in estimating the aspect 
ratio

n
for the determination of the normal depth ny  by Eq. 

(34) is small. Consequently, one may consider Eq. (34) as a 
satisfactory approximate solution.  

4.2.2. Example  

 A parabolic channel with the geometric elements 

8
m

T m= and 4my m= , a slope 0.002S = and 
0.5

85 /C m s= , 

carries a discharge
3

8 /Q m s= . Compute the normal depth 

ny  and the normal top width
n

T  using Chezy's resistance 

equation.  

i. According to Eq. (9), the parameter B is : 

2 2
/ 8 / 4 16m mB T y m= = =  

ii. Using Eq. (33), 
*

C is then : 

* 5 / 2

5 / 2
8 /(85 16 0.002 ) 0.002055

Q
C

CB S

= = , corre-

sponding to 
*

0.0453C   

iii. With
*

0.0453C = , one can read from Fig. 

(3) 0.25
n

, which can be computed otherwise by the 

use of Eq. (34) along with Table 2, whence : 

*0.251 0.267
1.310 1.310 0.002055 0.251

n
C= =  

iv. From Eq. (15), the normal depth ny  is then : 

2 2
16 0.251 1.008 1n ny B m= = =  

v. Eq. (13) gives the normal top width 
n

T  as : 

16 0.251 4.016 4
n n

T B m= = =  

5. CRITICAL FLOW 

5.1. Critical Flow Characteristics in Parabolic Sections 

 The well known criterion for critical flow states that: 

2

3
1

c

c

Q T

gA

=            (35) 

where the subscript "c" denotes the condition of the critical 

state of flow and g is the acceleration due to gravity. Fur-

Table 2. Values of and for Computation of the Aspect Ratio 
 n

by Eq. (34) 

  C
*

 
 n

   Maximum deviation (%) 

*
0.00198C  

*
0.00198 0.357C<  

*
0.357 1215.3C<  

n  0.25 

0.25 < n  1 

1 < n  10 

1.187 

1.310 

1.329 

0.251 

0.267 

0.284 

 0.7 

 1 

 0.6 
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thermore, from Eq. (10), the critical top width 
c

T is then : 

c cT By=            (36) 

 The water area 
c

A is given by : 

2

3
c c cA T y=  

which can be rewritten with the aid of Eq. (36) as : 

3 / 22

3
c cA y B=            (37) 

Inserting Eqs. (36) and (37) into Eq. (35), results in : 

2

3

9 / 2 3 / 2
(2 / 3)

c

c

Q By

gy B

=   

whence : 

2

4
27

8
c

Q
y

gB
=            (38) 

 Knowing the discharge Q and the parameter B, Eq. (38) 

permits then a direct determination of the critical depth cy , 

bearing in mind that B is well defined by the geometric ele-

ments 
m

T and my of the parabolic channel according to Eq. 

(9). Furthermore, eliminating cy between Eqs. (36) and (38), 

the critical top width 
c

T is explicitly expressed as : 

1/ 8
3 2

27

8
c

B Q
T

g
=           (39) 

 On the other hand, the aspect ratio 
c

is given by Eq. (14) 

for n cy y= , whence : 

c
c

y

B
=            (40) 

Eliminating cy between Eqs. (38) and (40), yields : 

1/ 8
2

5

27

8
c

Q

gB

=            (41) 

 As it can be seen, the aspect ratio 
c

is then well defined 

by the discharge Q and the parameter B. Consequently, the 

water area 
c

A and the hydraulic radius 
c

R can be deduced 

from Eqs. (17) and (22) respectively, when substituting 

n
by 

c
. Furthermore, the critical slope 

c
S is thus explicitly 

evaluated using Manning's or Chezy's equation, provided n 

or C is given. 

5.2. Example 

 A parabolic channel with the geometric elements 

4
m

T m= and 2my m= , a Chezy's roughness coeffi-

cient
0.5

85 /C m s= , carries a discharge
3

8 /Q m s= . Compute 

the critical depth cy  and the critical slope
c

S .  

i. According to Eq. (9), the parameter B is : 

2 2
/ 4 / 2 8m mB T y m= = =  

ii. With Q and B, Eq. (38) gives : 

1/ 4
1/ 42 2

4
27 27 8 27

1.288

8 8 9.81 8 9.81
c

Q
y m

gB
= = =  

iii. The aspect ratio 
c

 can be computed using Eq. (40) or 

Eq. (41), whence : 

1.288 / 8 0.40125
c

c

y

B
= =  

iv. According to Eqs. (17) and (22), the water area 
c

A and 

the hydraulic radius 
c

R  are respectively 

2 3 2 3 22 2
8 0.40125 2.756

3 3
c c

A B m= =   

3

2 2

3

2 2

16

3
4 1 16 ln(4 1 16 )

16 8 0.401
0.642

3
4 0.401 1 16 0.401 ln(4 0.401 1 16 0.401

c

c

c c c c

B
R

m

= =

+ + + +

+ + + +

 

 From the given data and using Eq. (29) under critical 

flow condition, the critical slope is : 

2 2

2 2 2 2

8
0.00181

85 2.756 0.642
c

c c

Q
S

C A R

= =  

v. This step aims to verify Eq. (35) with the computed 

data, once the top width 
c

T  is determined. According 

to Eq. (13), 
c

T is : 

8 0.40125 3.21
c c

T B m= = =  

 Inserting the values of Q, 
c

A and 
c

T in Eq. (35), results 

in: 

2 2

3 3

8 3.21
1.00041 1

9.81 2.756

c

c

Q T

gA

= =  

6. CONCLUSION 

 A single dimensionless curve for normal depth computa-

tion in parabolic sections is obtained by an appropriate non-

dimensionalization of both Manning's and Chezy's resistance 

equation. This is possible with the aid of the new parameter 

B which is well defined by the geometric elements 
m

T and 

my  of the channel according to Eq. (9). When Manning's 

equation is used, the non-dimensional parameter M [Eq. 

(27)] permits a graphical determination of the aspect ratio 
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n
 by reading Fig. (2). The same procedure is to be repro-

duced on Fig. (3) with Chezy's equation, once the non-

dimensional parameter 
*

C is determined from Eq. (33). In 

spite of the fact that Figs. (2 and 3) can be used without in-

curring any tangible error, approximate solutions for a direct 

computation of 
n

are proposed and presented under a sim-

ple power law form [Eqs. (28) and (34)]. These are circum-

stantially reported in Tables 1 and 2 from which one can 

observe the sufficient degree of their accuracy depending, 

however, on the limitations of M and
*

C . The parameter B 

plays also a significant role in critical flow computation, 

leading to explicit and simple formulae. In addition to criti-

cal slope, the flow characteristics such as critical depth, criti-

cal top width and critical aspect ratio can be directly com-

puted using Eqs. (38), (39) and (41) respectively. Some ex-

amples are taken to explain the procedure of calculation. 

NOTATION 

Ac = critical water area 

An  = normal water area 

B  = geometric element equal to 
2

/m mT y  

C  = Chezy's roughness coefficient  

C
* 

= dimensionless parameter equal to 

* 5 / 2
/( )C Q CB S=  

 g  = acceleration due to gravity 

M  = dimensionless parameter equal to 

8 / 3
/( )M nQ B S=  

 n  = Manning's roughness coefficient 

Pn  = normal wetted perimeter 

Q  = discharge 

Rn  = normal hydraulic radius equal to /
n n

A P  

S  = channel bed slope 

Sc = critical slope 

Tc  = top width at the critical depth 

Tm  = top width of a parabolic channel 

Tn  = top width at the normal depth 

X  = longitudinal coordinate 

yc  = critical depth 

ym  = height of a parabolic channel 

yn  = normal depth 

n
 = aspect ratio of normal water area  

c
 = aspect ratio of critical area 
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