
100 The Open Civil Engineering Journal, 2011, 5, 100-108  

 

 1874-1495/11 2011 Bentham Open 

Open Access 

Soil-Pile Dynamic Interaction in the Viscous Damping Layered Soils 

Yinhui Wang
1
, Kuihua Wang

2
, Zhixiang Zha

1,* and Renbo Que
2
 

1
Department of Civil Engineering and Architecture, Ningbo Institute of Technology, Zhejiang University, Ningbo, 

315100, China 

2
MOE Key Laboratory of Soft Soils and Geoenvironmental Engineering, Zhejiang University, Hangzhou, Zhejiang, 

310058, China 

Abstract: Modeling surrounding soil as a three-dimensional axisymmetric continuum and considering its wave effect, 

soil-pile dynamic longitudinal interaction in viscous layered soils is studied. The pile is assumed to be vertical, elastic and 

of uniform section, and the soil is layered and visco-elastic. Longitudinal vibration of pile in viscous damping layered 

soils undergoing arbitrary load is theoretically investigated. By taking the Laplace transform, the question can be solved in 

frequency domain. Utilizing two potentials combined with impedance transfer functions, analytical solutions for both the 

impedance function and mobility at the pile head in frequency domain are yielded. With the convolution theorem and 

inverse Fourier transform, a semi-analytical solution of velocity response in time-domain undergoing a half-cycle sine 

pulse force is derived. Based on the solutions proposed herein, the effects of variety of soil modulus on mobility curves 

and reflection wave curves are emphatically discussed. The results shows that there is a smaller peak between every two 

adjacent larger peaks on the mobility curve in layered soil, and larger peak cycle reflects the location where the modulus 

of the soil varies abruptly. The conclusions can provide theoretical guidance for non-destruction test of piles. 

Keywords: Soil-pile dynamic interaction, Layered soils, Viscous damping, Admittance curves, Mobility curves, Reflection 
wave curves.  

1. INTRODUCTION 

 Dynamic non-destruction test method based on the pile 

vibration theory is widely used to identify pile integrity in 

civil engineering. Many soil-pile dynamic interaction models 

have been developed to simulate the behavior of longitudinal 

vibration of pile. From the view point of different model of 

the surrounding soil, they can be put into two categories, that 

is, Winkler model [1-7] and continuum model [8-13]. In the 

former model, soil is modeled by the distributed Voigt body. 

However, the value of parameters in Winkler model, that is, 

stiffness of spring and damping of dashpot, can’t correlate 

well with the usual soil testing result. What’s more, it is 

difficult to consider the wave effect of the surrounding soil. 

The first kind of continuum model [8-11] is Plain-Strain 

model with assumption that soil consists of independent 

infinitesimally thin layers extending to infinity horizontally. 

In Plain-Strain model, it is assumed that the gradient of 

strain and stress in the vertical direction is zero and the 

waves propagate only horizontally. Such assumption does 

not match well with reality. The second kind of continuum 

model [12, 13] takes the gradient of stress of the surrounding 

soil in vertical direction into account and hence can consider 

the wave effect of the surrounding soil. Nevertheless, two 

import factors, say, the radial displacement and the  
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axisymmetric wave effect of the surrounding soil, are all 

neglected in above models. Furthermore, the foundation soil 

is layered and this layered nature has a significant impact on 

the dynamic response of the pile and hence should be 

considered.  

 Based on above review, the purpose of this paper is to 

derive an analytical solution for longitudinal vibration of pile 

subjected to harmonic longitudinal excitation in layered soils 

by taking the axisymmetric wave effect of the surrounding 

soil into account. Utilizing the solution derived herein, the 

effects of various soil parameters on the longitudinal 

vibration of pile are discussed. 

2. FORMULARION 

2.1. Pile-Soil System Model 

 The problem studied herein is the longitudinal vibration 

of pile embedded in a layered soil with viscous damping. 

The geometric model is shown in Fig. (1). The soil-pile 

system is discretized into a total of  n  layers numbered by  

1, 2, …,  n  from the pile toe to pile top. The properties of 

pile and soil layer are assumed to be homogeneous within 

each layer respectively, but may vary from layer to layer. In 

the kth soil-pile layer
  
(1 k n) , the mass density, modulus 

of compression, thickness, poisson’s ratio, longitudinal wave 

velocity, transversal wave velocity of the soil are denoted by 

 sk
, 

 
E

sk
, 

 
h

k
, 

 k
, 

 
VL

k
 and 

 
VS

k
, respectively. The Lame 

constants are 
 k

 and 
 
μ

k
 and the corresponding viscosity 
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coefficients are 
 k

 and
 
μ

k
, respectively. Here 

  
E

sk
= 2(1+

k
)μ

k
 and 

  

k
=

2
k

1 2
k

μ
k

, where
 k

 is the 

transverse ratio of the viscous deformation rate. The length, 

mass density, elastic modulus, longitudinal wave velocity, 

cross sectional area and sectional radius of the kth pile layer 

are expressed as  H , 
 p

, 
 
E

p
,  VP ,  S  and 

  
r

0
, respectively. 

  
f (t)  is an arbitrary vertical exciting force acting on the pile 

top and 
  
R

k
(z, t)  is a friction force acting on the surface of 

the pile along per unit length in the kth layer. The support of 

soil at the toe of pile is described as a single Voigt body 

which consists of a linear spring and a dashpot connected in 

parallel. The elastic modulus of the linear spring and the 

damping coefficient of the dashpot are denoted by 
b

k  and 

b
c , respectively. The supports of surrounding soil at the 

level of pile toe are described as distributed Voigt bodies in 

radial direction. The elastic modulus of the linear spring and 

the damping coefficient of the dashpot are expressed as 
s

k  

and
s

c , respectively. 

2.2. Assumptions 

 The soil-pile system model is developed on the basis of 

the following assumptions: 

(1) The surrounding soil layers with linear viscoelastic 

damping are assumed to be isotropic and homogeneous 

within each layer. The soil is infinite in the radial direction 

with free boundary condition at the surface of the soil. The 

soil radial displacement at the interface of the pile shaft is 

regarded to be small and thus can be neglected.  

(2) The excitation is harmonic. The soil-pile system is 

subjected to small deformations and strains during the 

vibration. Pile and soil contact perfectly and therefore both 

force equilibrium and displacement continuity are satisfied at 

the interface of soil-pile, soil-soil and pile-pile. 

(3) The pile is elastic and vertical with uniform circular cross 

section.  

(4) The initial displacement and velocity in the soil and pile 

are zero. 

2.3. Dynamic Equation of Soil 

 The geometric model of soil-pile in kth soil layer is 

shown in Fig. (2). The support of the surrounding soil at the 

top and bottom are described as Voigt bodies distributed in 

radial direction. The elastic modulus of the linear spring and 

the damping coefficient of the dashpot are denoted by 
 
k

ssk
, 

 
c

ssk
 and 

 
k

sxk
, 

 
c

sxk
, respectively. The vibration is 

axisymmetric. Let 
  
u

rk
(r, z, t) , 

  
u

zk
(r, z, t)  to be the radial and 

vertical displacement, respectively and then dynamic 

equation of soil can be written as follows: 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (2). Schematic illustration for k soil layer. 

 Radial direction: 

  
G

1k
( 2

+
1

r
2

)u
rk
+ 2G

2k
z

k
=

sk

2
u

rk

t
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         (1) 

 Vertical direction: 

  
G

1k

2
u

zk
2G

2k
(

r
+

1

r
)

k
=

sk

2
u

zk

t
2

         (2) 

where
  
G

1k
= (

k
+ 2μ

k
)+ ( + 2μ )

t
, 

  
G

2k
= (

k
+μ

k
)+ (

k
+μ

k
)

t
 ,

  

2
=

2

r
2
+

1

r r

+
2

z
2

and 

  
k
=

1

2
(

u
zk

r

u
rk

z
) . 

2.4. Dynamic Equation of Pile 

 Assuming the pile to be a one-dimensional continuum, its 

dynamic equation can be expressed as: 

 

 

 

 

 

 

 

 

 

Fig. (1). Schematic illustration of pile-soil system. 
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E

p
S

2w
k
(z,t)

z2
+ R

k
(z, t) = m

2w
k
(z,t)

t2
         (3) 

where  m  and
  
w

k
(z, t)  are mass of unit length and vertical 

displacement, respectively. 

2.5. Boundary Conditions and Initial Conditions 

 For convenience, local coordinate system is adopted 

herein. This means that the coordinate is zero at the bottom 

and 
k

h  at the top in the kth soil-pile layer. 

(1) Boundary conditions of the soil layer: 

 Displacements approach zero at an infinite radial 

distance: 

  

u
rk

(r, z, t) |
r

0

u
zk

(r, z, t) |
r

0
        (4-a) 

 Radial displacement is zero at the interface of soil and 

pile: 

  
u

rk
(r

0
, z, t) = 0         (4-b) 

 At the bottom of the kth soil-pile layer, stress boundary 

condition is as follows: 

  

k
sxk

E
sk

u
zk
+

c
sxk

E
sk

u
zk

t

u
zk

z
|
z=0
= 0        (4-c) 

where 
  
k

sx1
= k

s
, 

  
c

sx1
= c

s
. 

 At the top of the kth soil-pile layer, stress boundary 

condition is as follows: 

  

k
ssk

E
sk

u
zk
+

c
ssk

E
sk

u
zk

t
+

u
zk

z
|
z=h

k

= 0(k n 1)

zk
|
z=h

k

= 0(k = n)

     (4-d) 

(2) Friction force and displacement continuity condition at 

the interface of the kth soil-pile layer： 

  
R

k
(z, t) = 2 r

0 rzk
(r

0
, z, t)         (5-a) 

  
u

zk
(r

0
, z, t) = w

k
(z, t)        (5-b) 

(3) Boundary conditions of the kth pile segment: 

 At the top of the kth pile segment:  

  

w
k

z

f
k
(t)

E
p
S

|
z=h

k

= 0         (6-a) 

where
  
f

k
(t)  is the force that acts on the top of kth pile 

segment by   k +1 th pile segment and 
  
f

n
(t) = f (t)  at the 

level of pile head. 

 At the bottom of the pile:  

  

c
bxk

E
p
S

w
k

t
+

k
bxk

E
p
S

w
k

w
k

z
|
z=0
= 0       (6-b) 

where 
  
c

bx1
= c

b
, 

  
k

bx1
= k

b
. 

(4) Initial conditions of the kth soil-pile layer: 

 Initial conditions of the kth soil layer: 

  

u
rk

|
(r ,z ,0)

= 0,
u

rk

t
|
(r ,z ,0)

= 0

u
zk

|
(r ,z ,0)

= 0,
u

zk

t
|
(r ,z ,0)

= 0

       (7-a) 

 Initial conditions of the kth pile segment: 

  
w

k
|
( z ,0)

= 0 , 
  

w
k

t
|
( z ,0)

= 0        (7-b) 

3. SOLUTION OF THE EQUATIONS 

3.1. Vibrations of the Soil Layer 

 Two potential functions are introduced to decouple the 

displacements 
  
u

rk
(r, z,t)  and 

  
u

zk
(r, z,t)  in the Eq. (1) 

and Eq. (2): 

  
u

rk
(r, z, t) = sk

(r,z,t)
r

+
2

sk
(r,z,t)
r z

         (8) 

  

u
zk

(r, z, t) = sk
(r,z,t)
z

1
r r

r sk
(r,z,t)
r

         (9) 

 Let 
  
U

rk
(r, z, s)

,   
U

zk
(r, z, s)

,   sk
(r, z, s)

 and   sk
(r, z, s)  

to be the Laplace transform of 
  
u

rk
(r, z, t) , 

  
u

zk
(r, z,t) , 

  sk
(r, z, t)

 and   sk
(r, z, t)  with respect to  t , respectively. 

Taking the Laplace transform of Eq. (1) and Eq. (2) and 

combining the initial conditions of the soil layer yield: 

 Radial direction: 

  
G

1k

L ( 2
+

1

r
2

)U
rk
+ 2G

2k

L

z
k

L
=

sk
s

2
U

rk
       (10) 

 Longitudinal direction: 

  
G

1k

L 2
U

zk
2G

2k

L (
r
+

1

r
)

k

L
=

sk
s

2
U

zk
       (11) 

where
  
G

1k

L = (
k
+ 2μ

k
)+ ( + 2μ )s , 

  
G

2k

L = (
k
+μ

k
)+ (

k
+μ

k
)s , 

  

2
=

2

r
2
+

1

r r

+
2

z
2

and 

  
k

L
=

1

2
(

U
zk

r

U
rk

z
) . 

 Taking the Laplace transform of Eq. (8) and Eq. (9) 

yields: 

  
U

rk
(r, z, s) = sk

(r,z,s)
r

+
2

sk
(r,z,s)
r z

       (12) 

  

U
zk

(r, z, s) = sk
(r,z,s)
z

1
r r

r sk
(r,z,s)
r

      (13) 
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 Substituting Eq. (12) and Eq. (13) into Eq. (10) and Eq. 

(11) yields: 

  
G

1k

L

r

2

sk
+ μ

k
+μ

k
s( )

2

r z

2

sk
=

sk
s

2 ( sk

r
+

2
sk

r z
)    (14) 

  

G
1k

L

z

2

sk
μ

k
+μ

k
s( )

2

r2
+ 1

r r( ) 2

sk

=
sk

s
2 sk

z

2

r2
+ 1

r r( ) sk

       (15) 

 And thus Eq. (14) and Eq. (15) can be decoupled as 

follows: 

  

2

sk

s
2

lk

2 sk
= 0          (16) 

  

2

sk

s
2

v
sk

2 sk
= 0          (17) 

where

  

lk
=

G
1k

L

sk

, 
 

sk
=

μ
k
+μ

k
s

sk

, 

  

k
=

2(1
k
)

1 2
k

; 

  

VL
k
= k

+ 2μ
k

sk

 and 

 

VS
k
=

μ
k

sk

are longitudinal wave and 

shear wave velocity of the kth soil layer, respectively. 

 Solving Eq. (16) and Eq. (17) with method of separation 

of variables first and then combining Eq. (12) and Eq. (13), 

we can obtain the solutions of 
  
U

rk
(r, z, s)  and 

  
U

zk
(r, z, s)  as 

follows: 

  

U
rk

(r, z, s) = [A
1k

cos(
k
z)+ B

1k
sin(

k
z)]

[C
1k

I
1
(

k
r) D

1k
K

1
(

k
r)]

k

[A
2k

sin(
k
z) B

2k
cos(

k
z)]

[C
2k

I
1
(s

k
r) D

2k
K

1
(s

k
r)]

k
s

k

       (18) 

  

U
zk

(r, z, s) = [B
1k

cos(
k
z) A

1k
sin(

k
z)]

[C
1k

I
0
(

k
r)+ D

1k
K

0
(

k
r)]

k

[A
2k

cos(
k
z)+ B

2k
sin(

k
z)]

[C
2k

I
0
(s

k
r)+ D

2k
K

0
(s

k
r)]s

k

2

       (19) 

where 
  
I

0
()  and K0 ()  are modified Bessel functions of order 

zero of the first and second kind, respectively; 
  
I

1
()  and 

  
K

1
()  are modified Bessel functions of order first of the first 

and second kind, respectively. 
  
A

1k
, 
  
B

1k
, 
  
C

1k
, 
  
D

1k
, 
  
A

2k
, 
  
B

2k
, 

  
C

2k
, 

  
D

2k
 and 

 k
 are constants to be determined by the 

boundary conditions. 
 k

and 
 
s

k
 satisfy the following rela- 

tionship: 

  
k

2

k

2=- s2

lk

2
          (20) 

  
k

2
s

k

2
= s2

sk

2
          (21) 

 For convenience, repeat Eq. (4-a) here: 

  

u
rk

(r, z, t) |
r

0

u
zk

(r, z, t) |
r

0
         (22) 

 Take the Laplace transform of Eq. (22): 

  

U
rk

(r, z, s) |
r

0

U
zk

(r, z, s) |
r

0
      (4-a’) 

 Similarly, taking the Laplace transform of Eq.(4-b) to (4-

d) as follows: 

  
U

rk
(r

0
, z, s) = 0        (4-b’) 

  

(
k

sxk

E
sk

+
c

sxk

E
sk

s)U
zk

(r, z, s)
U

zk
(r, z, s)

z
|
z=0
= 0    (4-c’) 

  

(
k

ssk

E
sk

+
c

ssk

E
sk

s)U
zk

(r, z, s)+
U

zk
(r, z, s)

z
|
z=h

k

= 0

[(
n
+ 2μ

n
)+ (

n
+ 2μ

n
)s]

U
zn

z
+ (

n
+

n
s)

(rU
rn

)

r r
|
z=h

n

= 0

 (4-d’) 

 Substituting Eq. (18) and Eq. (19) into Eq. (4-a’) to (4-d’) 

and solving them simultaneously yields 
  
U

rk
(r, z, s)  and 

  
U

zk
(r, z, s) : 

  

U
rk

(r, z, s) = a
km

M
km

sin(
km

z
km

)
km

[K
1
(

km
r)

K
1
(

km
r

0k
)

K
1
(s

km
r

0k
)

K
1
(s

km
r)]

m=1

U
zk

(r, z, s) = a
km

M
km

cos(
km

z
km

)[ km
K

1
(

km
r

0k
)

km
K

1
(s

km
r

0k
)

s
km

K
0
(s

km
r)

km
K

0
(

km
r)]

m=1

 
(23)

 

where 
 
a

km
 is a constants to be determined. 

 km
, 

 km
, 

 
s

km
, 

 km
 and 

 
M

km
 can be obtained from the following equations: 

  

tan(
km

h
k
) =

(KX
k
+ KS

k
)

km

km

2
KX

k
KS

k

        (24) 

  
km

2

km

2
= - s2

lk

2
         (25) 

  
km

2
s

km

2
= s2

sk

2
         (26) 

  

tan(
km

) =
KX

k

km

          (27) 

  

M
km
= 1+ ( km

KX
k

)2          (28) 

where 

  

KS
k
=

k
ssk
+ c

ssk
s

E
sk

(k < n)

KS
k
= 0(k = n)

KX
k
=

k
sxk
+ c

sxk
s

E
sk

        (29) 
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3.2. Solution for Longitudinal Vibrations of the Pile 

 Denote 
  
W

k
(z, s)  as the Laplace transform with respect to 

time of 
  
w

k
(z, t)  and take the Laplace transform of Eq. (3). 

After using the initial condition (7-b), we can get: 

  

d2W
k
(z,s)

dz2
+ p2W

k
(z, s) =

R
k
(z, s)

E
p
S

        (30) 

where 
  

p
2
=

s
2

VP
2

. 

 Rewrite boundary condition (5-a) as : 

  

R
k
(z, s) = 2 r

0
(μ

k
+μ

k
s)

a
km

M
km

cos(
km

z
km

)(
km

2
s

km

2 ) km

km

K
1
(

km
r

0
)

m=1

   (31) 

 Then solving Eq. (30) for 
 
W

k
 and using boundary 

condition Eq.(31) gives: 

  

W
k
= Asin( pz)+ B cos( pz)+ C

km
cos(

km
z

km
)

m=1

      (32) 

where 

  

C
km
= C

km
a

km

C
km
=

2 r
0
(μ

k
+μ

k
s)M

km
(s

km

2

km

2 )
km

K
1
(

km
r

0
)

E
p
S( p2

km

2 )
km

   (33) 

 Taking the Laplace transform of Eq. (5-b) gives 

  
U

zk
(r

0
, z, s) =W

k
(z, s) , which can be further rewritten as 

follows: 

  

a
km

D
km
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km

z
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)
m=1

= C
km

cos(
km

z
km

)
m=1

+ Asin( pz)+ B cos( pz)

      (34) 

where 

  

D
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= M

km
[
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K

0
(
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r

0
) km

K
1
(

km
r

0
)
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K

1
(s
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0
)

s
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K
0
(s
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r

0
)]  (35) 

 It can be proved that 
  
cos(

km
z

km
)  form an orthogonal 

set over the interval 
  
[0, h

k
]  as follow: 

  

cos(
km

z
km

)
0

h
k

cos(
kn

z
kn

)dz 0(m = n)

cos(
km

z
km

)
0

h
k

cos(
kn

z
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)dz = 0(m n)

      (36) 

 Multiplying both sides of Eq. (34) by 

  

2

h
k

cos(
km

z
km

) and 

then integrating over the interval 
  
[0, h

k
] , we can get 

 
W

k
 : 

  

W
k
=

F
k1m

C
km

cos(
km

z
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)

(D
km

C
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)F
k 3mm=1

+ sin( pz) A

+
F
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C
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)F
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      (37) 

where 

  

F
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=
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h
k

sin( pz) cos(
km

z
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)dz
0

h
k

F
k 2m

=
2

h
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k
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z
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0

h
k

.  (38) 

 Denoting 
  
F

k
(s)  as the Laplace transform of 

  
f

k
(t) with 

respect to  t  and taking the Laplace transform of the 

boundary conditions Eq. (6-a) and Eq. (6-b) yields: 

  

dW
k

dz

F
k
(s)

E
p
S

|
z=h

k

= 0        (6-a’) 

  
E

p
S

dW
k

dz
= (k

bxk
+ c

bxk
s)W

k
|
z=0

     (6-b’) 

 Substituting Eq. (37) into Eq. (6-a’) to (6-b’) and solving 

for  A  and  B , we can obtain the impedance function at the 

kth pile segment head: 

 

                 (39) 
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=
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N
2k
=
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)
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)]
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)F
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+
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k 1

E
p
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. 

 And then the velocity admittance function at the kth pile 

segment can be obtained as follows: 

  

G
vk

(s) =
s

Z
k
(s)

          (40) 

 Set   i = 1 ,  and 
 

T
k
=

h
k

VP
to be the imaginary unit, 

the circular frequency and the propagating time in the kth 

pile segment, respectively. For convenience, some 

dimensionless parameters are introduced as follows: 

  

r
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=

r
0

h
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; 
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= sk
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; 
 
v
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=
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k
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; 
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=
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=
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D = k

k
T

k
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=
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k
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p

k
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R
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=

k
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; 
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=
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where 
 k

 and 
 km

 can be determined utilizing the following 

equations: 

  

tan(
k
) =

[KX
k
+ KS

k
]

k

[
k

2

KX
k
KS

k
]

        (41) 

  

tan(
km

) =
KX

k

km

          (42) 

where equation (41) is a complex transcendental equation 

and can be solved by numerical method. 

 Substituting s i=  into Eq. (39) to (40), the 

displacement impedance function and velocity admittance at 

the head of kth pile segment can be expressed as follows: 

 

K
dk
=

E
p
S

h
k

K
dk

          (41) 

  

H
vk

( ) =
1

p
S VP

H
vlk

         (42) 

where 
 
K

dk
 and 

 
H

vlk
 are dimensionless displacement 

impedance function and velocity admittance function, 

respectively: 

  

K
dk
= Z

k
=

(L
1k

N
2k

L
2k

N
1k

)

DN
k

        (43) 

  

H
vlk
=

1

Z
k

i p
k

          (44) 

 Set k n=  in Eq. (41) and Eq. (42) and then the 

displacement impedance function and velocity admittance at 

the pile head can be obtained. 

 When the excitation acting on the pile head is a half-sine 

pulse such as
  
f (t) =Q

max
sin(

T
t) , 

  
t (0,T ) , where  T  

denotes the impulse width, then the semi-analytical velocity 

response of the pile head can be expressed as: 

  

g
n
(t) = Q

max
IFT (H

vn

T
2

T
2 2

(1+ e
i T )) =

Q
max

p
S VP

g
n
(t)    (45) 

  

g
n
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1

2
H

v ln

T

2 T 2
2

(1+ e i T )ei t d       (46) 

where 

  

T
c
=

h
k

VP
i=1

n

 denotes the propagation time of elastic 

longitudinal wave propagating from the pile head to pile tip. 

 

t =
t

T
c

, 

 

T =
T

T
c

 and 
 
= T

c
 denote the dimensionless 

time, dimensionless impulse width and dimensionless 

circular frequency, respectively. 

4. PARAMETRIC STUDY AND DISCUSSION 

 In the following, the effects of variety of soil modulus on 

the velocity admittance curves and reflection wave curves  
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are discussed, which are the theoretical basis of mechanical 

impedance analysis method and reflection wave method. For 

convenience, the subscripts marking the soil layer are 

eliminated if the parameter values are same in each layer in 

the following figures. Number sequence of the soil layer is 

shown in Fig. (1). Parameters using in the analysis are shown 

as follows:

  
V

ij
=VS

i
/ VS

j   VP = 3500、
  
r

0
= 0.5、

  p
= 2500、

  
c

b
= 5 10

5、
  
k

b
=10

9、 = 0.4、 = 0.4、
 
μ = 5 10

3、

 
= 0.7、

  

k
sxk

E
sk

=1、
 
c

sxk
=104、

  

k
ssk

E
sk

(k < n) =1、

  
c

sxk
(k < n) =104、  T =1.5ms . 

 The case of two soil layers: Influence of modulus of 

upper soil layer on the velocity admittance curve and 

reflection wave curve at the pile top 

 Fig. (3.a) shows that the variation of modulus of the 

upper soil layer has significant effect on the velocity 

admittance curve. Compared with the case that the soil is 

homogeneous, the velocity admittance curve of the pile top 

has a phenomenon that there is a smaller peak between every 

two adjacent larger peaks. When the upper soil layer is 

stiffer than the lower soil layer, it can be seen that the 

amplitude of the velocity admittance increase at first as the 

frequency increases, but then decrease as the frequency 

further increases after the amplitude is beyond the 

maximum. When the upper soil layer is softer than the lower 

soil layer, it can be seen that the amplitude of the velocity 

admittance decrease as the frequency increases and the 

amplitude increase as the frequency further increases after 

the amplitude is beyond the minimum. For two cases, the 

length between every two adjacent larger peaks (large peak 

cycle) is almost equal, which reflects the location where the 

soil impedance varies abruptly with the relationship 

  
h

2
VP / d

max
=10.18m . The length between one larger 

peak and its corresponding adjacent smaller peak (smaller 

peak cycle) reflects the pile length with the relationship 

  H VP / d =19.64m . Fig. (3.b) shows that wave curve 

at the division surface concaves and is out of phase with the 

input pulse when the upper soil layer is stiffer than the lower 

soil layer. The wave curve at the division surface convexes 

and is in phase with the input pulse when the upper soil layer 

is softer than the lower soil layer. 

 Fig. (4.a) and Fig. (4.b) show that the amplitude of the 

velocity admittance decreases as the modulus of the upper 

soil layer increases and oscillation is weak. The dynamic 

stiffness at the low frequency range increases and the 

amplitude of the input impulse and the reflection amplitude 

at the pile tip decreases. The amplitude of the reflected wave 

amplitude at the division surface increases. It is due to more 

energy dissipation in the shallow layer as the modulus of the 

upper soil layer increases. 

 The case of three soil layers: Influence of modulus of 

surrounding soil on the velocity admittance curve and 

reflection wave curve at the pile top 

a 

 

 

 

 

 

 

 

 

 

 

b 

 

 

 

 

 

 

 

 

Fig. (3). Influence of Variations of modulus of upper soil layer on 
velocity admittance curve and reflection wave curve. 
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Fig. (4). Influence of varying degree of modulus of upper soil layer 
on velocity admittance curve and reflection wave curve. 
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Fig. (5.a) and Fig. (5.b) show that the velocity admittance 

curve is similar to the case of two soil layers when there is 

stiffer or softer interlayer in the surrounding soil. Large peak 

cycle reflects the location of the interlayer with the 

relationship 
3 max

/ 6.5h VP d m= . At the first peak, the 

amplitude of the case with stiffer interlayer is larger than that 

of the case with homogeneous soil and the amplitude of the 

case with softer interlayer is smaller than that of the case 

with homogeneous soil. Consequently, the properties of the 

upper soil layer have significant effect on the amplitude of 

the first peak. The wave curve at the division surface is out 

of phase with the input pulse for stiffer interlayer case and in 

phase with the input pulse for softer interlayer case. The 

amplitude of the reflection wave at the pile tip decrease as 

the modulus of the stiffer or softer interlayer increases. 
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Fig. (5). Influence of hard or soft interlayer on velocity admittance 
curve and reflection wave curve. 

 Fig. (6.a) and Fig. (6.b) show that the occurring time of 

the reflected waves of the interlayer is retarded as the buried 

depth of the softer layer becomes deeper. The large peak 

cycle of the velocity admittance curve reflects the buried 

depth of the interlayer with the relationship 

3 max1 max 2 max 3
/ / / 6.39 /8.46 /10.18h VP d d d m m m= . 

 Fig. (7.a) and Fig. (7.b) show that the amplitude of the 

velocity admittance increases but the reflection amplitude of 

the interlayer tends to be weaker as the thickness of the 

softer interlayer increases. The reflection amplitude at the 

pile tip increase. It is due to less energy dissipation in the 

interlayer as its thickness increases. 
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Fig. (6). Influence of location of soft interlayer on velocity 
admittance curve and reflection wave curve. 
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Fig. (7). Influence of length of soft interlayer on velocity 
admittance curve and reflection wave curve. 
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5. CONCLUSIONS 

(1) Modeling surrounding soil as a three-dimensional 

axisymmetric continuum and considering its wave effect, 

soil-pile dynamic longitudinal interaction in viscous layered 

soils is studied. The analytical solution of mobility in the 

frequency domain and semi-analytical solution of velocity 

response in the time domain undergoing a half-cycle sine 

pulse force have been derived. Based on the solutions herein, 

the effect of stiffer or softer interlayer on the mobility curves 

and reflection wave curves of integrated pile is studied 

(2) Compared with the case of homogeneous soil, there is a 

smaller peak between every two adjacent larger peaks on the 

mobility curve in layered soil. The difference between two 

adjacent larger peaks can be used to locate where abrupt 

variety of soil modulus happens. At the division surface, the 

reflection wave curve is out of phase with the input pulse if 

soil modulus increases and in phase with the input pulse if 

soil modulus decreases. 

REFERENCES 

[1] K. H. Van, P. Middendorp, and B. P Van, “An analysis of 

dissipative wave propagation in a pile”, Intl seminar on the 
application of Stress-Wave Theory onpiles/Stockholm, 1980. 

[2] D. W. Chang and S. H. Yeh, “Time-domain wave equation 
analyses of single piles utilizing tansformed radiation damping”, 

Soils and Foundations, JGS, vol. 39, no.2, pp. 31- 44, 1999. 
[3] W. Teng, W. Kuihua, and X. Kanghe, “Study on vibration 

properties of piles in layered soils”, China Civil Engineering 
Journal, vol. 35, no. 1, pp. 83-87, 2001. (in Chinese). 

[4] L. Dongjia, “Dynamic axial response of multi-defective piles in 

nonhomogeneous soil”, Chinese Journal of Geotechnical 
Engineering, vol. 22, no. 4, pp. 391-395, 2002. (in Chinese). 

[5] W. Kuihua, “Vibration of inhomogeneous viscous-elastic pile 
embedded in layered soils with general Voigt model”, Journal of 

Zhejiang University (Engineering Science), vol. 36, no. 5, pp. 565-
571, 595, 2002. (in Chinese). 

[6] W. Kuihua and Y. Hongwei, “Vibration of inhomogeneous pile 
embedded in layered soils with general Voigt model”, Acta Mechanica 

Solida Sinica, vol. 24, no. 3, pp. 293-303, 2003. (in Chinese). 
[7] F. Shijin, C. Yunmin, and L. Mingzhen, “Analysis and application 

in engineering on vertical vibration of viscoelasticity piles in 
layered soil”, China Journal of Highway and Transport, vol. 17, 

no. 2, pp. 59-63, 2004. (in Chinese). 
[8] T. Nogami and M. Novak, “Soil-pile interaction in vertical 

vibration”, Earthquake Engineering and Structural Dynamics, vol. 
4, pp. 277-293, 1976. 

[9] M. Novak and F. Aboul-Ella, “Impedance functions of piles in 
layered media”, Journal of the Engineering Mechanics Division, 

ASCE, vol. 104, pp. 643-661, 1978. 
[10] M. Novak, T. Nogami, and F. Aboul-Ella, “Dynamic soil reactions 

for plane strain case”, Journal of the Engineering Mechanics 
Division, ASCE, vol.104 (EM4), pp. 953-959, 1978. 

[11] G. Militano and R. K. N. D. Rajapakse, “Dynamic response of a 
pile in a multi-layered soil to transient torsional and axial loading”, 

Geotechnique, vol. 49, no. 1, pp. 91-109, 1999. 
[12] H. Changbin, W. Kuihua, and X. Kanghe, “Time domain analysis 

of vertical dynamic response of a pile considering the effect of  
pile-soil interaction”, Chinese Journal of Computational  

Mechanics, vol. 21, no. 4, pp. 392-399, 2004. (in Chinese). 
[13] H. Changbin, W. Kuihua, and X. Kanghe, “Time Domain Axial 

Response of Dynamically Loaded Pile in Viscous Damping Soil 
Layer”, Journal of Vibration Engineering, vol. 17, no.1, pp. 72-77, 

2004. (in Chinese). 

 
 

Received: September 01, 2010 Revised: November 21, 2010 Accepted: January 03, 2011 

 

© Wang et al.; Licensee Bentham Open. 
 

This is an open access article licensed under the terms of the Creative Commons Attribution Non-Commercial License  

(http://creativecommons.org/licenses/ by-nc/3.0/) which permits unrestricted, non-commercial use, distribution and reproduction in any medium, provided the 
work is properly cited.  

 


