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Abstract: The paper reviews several topics associated with the homogenization of transport processed in historical ma-
sonry structures. Since these often experience an irregular or random pattern, we open the subject by summarizing essen-
tial steps in the formulation of a suitable computational model in the form of Statistically Equivalent Periodic Unit Cell 
(SEPUC). Accepting SEPUC as a reliable representative volume element is supported by application of the Fast Fourier 
Transform to both the SEPUC and large binary sample of real masonry in search for effective thermal conductivities lim-
ited here to a steady state heat conduction problem. Fully coupled non-stationary heat and moisture transport is addressed 
next in the framework of two-scale first-order homogenization approach with emphases on the application of boundary 
and initial conditions on the meso-scale. 
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1. INTRODUCTION 

 Advanced computational simulations of historic struc-
tures are becoming increasingly common in the assessment 
of their existing state and in planning of reconstruction 
measures [1]. In this context, particular attention needs to be 
paid to variations of temperature and moisture fields, whose 
contribution to structural damage usually far exceeds the 
effects of mechanical loadings, see e.g. [2-4] for concrete 
case studies. Taking into account highly heterogeneous char-
acter of historical constructions, simulations of these phe-
nomena often necessitates the deployment of multi-scale 
strategies, developed for mechanical [5- 8] and transport 
processes [9, 10] in masonry structures. Successful engineer-
ing application of this modeling approach to the assessment 
of Charles Bridge in Prague is described in our work [11]. 
There, three-dimensional multi-physics analysis of the bridge 
body was executed, with material parameters at the macro-
scopic structural scale determined from meso-scale simula-
tions. Among other things, results of the study highlighted 
the need for fully coupled macro-meso simulations of 
transport processes. In this paper, we complement these 
results by a more detailed analysis of two aspects of multi-
scale simulations, namely the meso-scale representation for 
irregular masonry structures and the introduction of proper 
boundary and initial conditions in the macro-meso scale 
transition. 
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 The masonry texture at meso-scale is to be incorporated 
in the form of the Representative Volume Element (RVE), a 
statistically representative sample of the analyzed material 
[12]. Specification of the RVE is particularly simple in case 
of a regular masonry, for which it reduces to a Periodic Unit 
Cell (PUC) associated with a given type of the bond [5]. 
However, historical masonry structures are typically of ir-
regular or random textures, which renders the determination 
of PUC unambiguous. A convenient approach to overcome 
this difficulty was introduced by Povirk [13], who suggested 
to replace the original complex meso-structure with an ideal-
ized PUC, with parameters determined by matching spatial 
statistics of original and simplified representation. By com-
bining his ideas with related works on microstructure recon-
struction, e.g. [14], the concept of Statistically Equivalent 
Periodic Unit cell (SEPUC) was later successfully applied to, 
e.g. analysis of fiber-reinforced [15, 16] and woven compo-
sites [17, 18], high-density polydisperse particle packings 
[19] or micro-heterogeneous steels [20]. In Section 2, we 
employ this procedure to an irregular masonry wall of 
Charles Bridge in Prague, characterized by a digital photo-
graph. 
 Generating a suitable RVE of a heterogeneous material is 
just the first step towards a reliable prediction of material as 
well as structural response of masonry. Focusing on the 
description of transport processes in heterogeneous media 
the reader is advised to study the work by Özdemir et al. [21] 
and Larsson et al. [22]. Through the application of consistent 
variational formulation the authors in [22] suggested the 
macroscopic response to be dependent on the actual size of 
mesoscopic RVE, providing the transient conditions are 
assumed on both the macro- and meso-scale. Being aware of 
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the need for a fully coupled multi-scale analysis of simulta-
neous heat and moisture transport in masonry structures 
performed recently in [23], it becomes clear that additional 
sub-stepping of a given macroscopic time step on the meso-
scale may considerably slow down the computational pro-
cess. To show that in some cases this step might be avoided 
by running the meso-scale analysis under steady state condi-
tions [21] even for a finite size RVE may thus prove useful 
in keeping the computational cost relatively low. This issue 
is addressed in the second part of this paper, Section 3, with 
particular attention dedicated to the influence of loading and 
initial conditions imposed on the meso-scale. 

2. IMAGE-BASED GEOMETRICAL MODELING 

 This section deals with the first aspect of multi-scale 
simulations announced above, namely with the realistic rep-
resentation of irregular masonry structure relying on image-
based data. To this purpose, in Section 2.1 we introduce the 
model of an idealized mesostructure and the procedure to 
determine its parameters. Section 2.2 briefly reviews the 
numerical scheme employed to determine the local fields 
operating directly on mesostructural images. These two tools 
are combined together in Section 2.3 to assess the SEPUC 
quality in view of the distribution of heat fluxes in disor-
dered masonry under steady-state conditions. 

2.1. Strategy of SEPUC Determination 

 The key step in the SEPUC definition is a proper choice 
of spatial statistics to characterize the dominant features of 
the heterogeneous material under study. With the focus on 
masonry structures, we limit our attention to the mortar two-
point probability function, see e.g. [24] for a general over-
view and examples of alternative statistical descriptors. 
 To introduce the subject, consider a masonry sample 
Ω composed of mortar and blocks, and denote the character-
istic function of the domain occupied by mortar as χ(x). 
Then, the two-point probability function S2 states the proba-
bility that two points x and y, randomly thrown into a medi-
um, will both be found in the mortar phase, 

𝑆2(𝒙,𝒚) = ℙ(𝜒(𝒙)𝜒(𝒚) = 1) . (1) 
 For the case of statistically homogeneous and ergodic 
media, two-point probability function depends on (x − y) 
only and S2 (0) = ϕ, where ϕ is the mortar volume fraction. 
Moreover, it can be obtained from the relation 

𝑆2 = 1
|Ω|
ℱ−1�ℱ(𝜒)ℱ(𝜒)�������� , (2) 

that can be efficiently evaluated using the Fast Fourier Trans-
form (FFT) techniques for image-based microstructures [24, 
25]. In Eq. (2), ℱ(•) and ℱ−1(•) designate the forward and 
inverse Fourier Transform operators, respectively, •� denotes 
the complex conjugate and |Ω| is the area of Ω. 

 Once the original structure has been quantified by a suit-
able statistical descriptor, a proper parametrization of the 
idealized cell geometry needs to be introduced, expressed 
here by a parameter vector p. Its optimal value then follows 
from the minimization of a least square error 

𝐸(𝒑) = 1
|Ω□|∫ �𝑆2� (𝒙) − 𝑆2(𝒙,𝒑)�2d𝑥Ω□

, (3) 

expressed as the difference between the target statistical 
descriptor 𝑆2� (𝒙) related to the original microstructure and 
the unit cell associated with p, integrated over the unit cell 
domain Ω□ ⊂ Ω . 
 A closer inspection reveals that the objective function (3) 
is non-convex, multimodal and discontinuous due to the 
effect of limited bitmap resolution. Based on our previous 
experience [26, 27], a global stochastic optimization algo-
rithm, relying on the combination of real-valued genetic 
algorithms and the Simulated Annealing method, is em-
ployed to solve this optimization problem. 

2.2. Homogenization Scheme 

 The distribution of local fields within Ω□ follows from 
the solution of a periodic unit cell problem [28] 

𝛁 × 𝛁𝜃 = 0,𝛁 ∙ 𝒒 = 0,𝒒 = −𝝀𝛁𝜃 in Ω□ , (4) 

in which q stands for the thermal flux vector, λ is the second-
order tensor of material conductivity and 𝛁𝜃 denotes the Ω□ 
- periodic field of temperature gradient satisfying 
1

|Ω□ | 
 ∫ 𝛁𝜃(𝒙)d𝒙Ω□ 

= 𝛁Θ , (5) 

where 𝛁Θ is the macroscopic temperature gradient pre-
scribed over Ω□  , see Section 3 below for additional details. 
It is well-known that the solution to the unit cell satisfies the 
Lippman-Schwinger equation [28] 

𝛁𝜃(𝒙) + ∫ 𝚪(𝒙 − 𝒚)𝛿𝝀(𝒚)𝛁𝜃(𝒚)d𝒚 = 𝛁ΘΩ□ 
 , (6) 

where 𝛿𝝀 = 𝝀 − 𝜆(0)𝑰, 𝜆0 is the conductivity of an auxiliary 
isotropic reference medium and the second-order operator Γ 
is related to the Green function of problem (4) with 𝝀(𝒙) =
𝜆(0)𝑰 . It admits a compact closed-form expression in the 
Fourier space [28] 

𝓕(𝚪)(𝒌) = �
 𝟎 for 𝒌 = 𝟎,

𝒌⊗𝒌
𝒌∙𝒌

 otherwise,
�  (7) 

so that its action can be efficiently evaluated by the FFT 
algorithm. This observation resulted in an iterative scheme 
due to Moulinec and Suquet [29], applicable to arbitrary 
digitized media. 
 In our case, we adopt an accelerated version of the origi-
nal algorithm due to Zeman et al. [30]. Since the sample is 
discretized by a regular N1 × N2 bitmap, it is convenient to 
project the integral equation (6) onto the space of trigono-
metric polynomials, e.g. [31]. This yields the linear system in 
the form 
(𝑰 + 𝑩)∇𝜽d = ∇𝚯d , (8) 
where the 2N1N2 vector ∇𝜽d stores the unknown discrete 
values of temperature gradient at pixels, ∇𝚯d is the corre-
sponding vector of the overall temperature gradient and the 
matrix B is expressed as 

𝑩 = �𝑭
−1 𝟎
𝟎 𝑭−1

�  �𝚪11 𝚪12
𝚪21 𝚪22

� �𝑭 𝟎
𝟎 𝑭� �

𝛿𝛌11 𝛿𝛌12
𝛿𝛌21 𝛿𝛌22

�. (9) 
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 Here, the matrices 𝑭 and 𝑭−1 implement the forward and 
inverse discrete Fourier transform and, e.g. 𝛿𝛌12is a diagonal 
(N1N2) × (N1N2) matrix storing the corresponding component 
of the conductivity matrix at individual pixels, see [30] for 
more details. The system (8) is solved using standard conju-
gate gradient algorithm. 
 Upon convergence, the distribution of the local heat flux 
q due to 𝛁Θ is determined from the solution 𝛁𝜃  by Eq. (4)3 
and the global heat flux is computed as 

𝑸 = 1
|Ω□ |

 ∫ 𝒒(𝒙)d𝒙.Ω□ 
 (10) 

 This allows us to determine the 2 × 2 homogenized con-
ductivity matrix 𝝀hom via the solution of two successive 
steady state heat conduction problems. To that end, the peri-
odic unit cell is loaded, in turn, by each of the two compo-
nents of 𝛁Θ equal to unity, while the remaining one vanish-
es. The corresponding volume flux averages Q then provide 
individual columns of 𝝀hom. 

2.3. Example 

 Principles of the introduced methodology are illustrated 
by the analysis of sandstone facing masonry wall of Charles 
Bridge in Prague appearing in Fig. (1). As the first step, the 
original color image, Fig. (1a), was thresholded to the binary 
representation, manually adjusted to remove image pro-
cessing artifacts and a rectangular domain Ω was selected for 
further analysis, Fig. (1b). 
 Our aim is to replace this complex meso-structure with 
its idealized representation in terms of a two-block-layer 
SEPUC, described by twelve parameters assembled in the 
vector 

𝒑 = (𝑏, 𝑏1,𝑏2,∆,ℎ1,ℎ2, 𝑡1, 𝑡2, 𝑡3, 𝑡4, 𝑡5, 𝑡6), (11) 
 see Fig. (2a). These parameters are adjusted to minimize 
the discrepancy between the target two-point probability 
function, Fig. (3a), and the one corresponding to the SEPUC, 
Fig. (3b). As visible, the resulting SEPUC-based representa-
tion Ω□, Fig. (2b), captures the dominant features of the 
original microstructures, such as the overall volume fraction 

equal to 7.5%, or the average thickness of joints, correspond-
ing to the spread of the peak at x = 0 in the horizontal and 
vertical directions. However, a significant amount of fine-
scale features of the two-point probability functions, visible 
in the original data, are filtered out or poorly reproduced by 
the adopted, more regular, representation. 
 Of course, the impact of such approximation needs to be 
quantified a-posteriori, from the point of view of the particu-
lar application. In our case, such a step is performed on the 
basis of homogenized conductivities and distribution of heat 
fluxes as determined by the FFT scheme. The distribution of 
the magnitudes of local fields due to macroscopic tempera-
ture gradient ∂Θ/∂x2 appears in Fig. (4), for phase conductiv-
ities set according to Table 2. We observe that even though 
the local fields within the SEPUC are certainly more regular 
than in the original mesostructure, the extreme values as well 
as the average distributions are reproduced surprisingly well. 
 This claim is further supported by very close match be-
tween the homogenized conductivities of SEPUC and the 
original media, Table 1, demonstrating that the SEPUC is 
capable of reproducing almost perfect isotropy of the origi-
nal sample. Finally, for the sake of comparison, we also 
present homogenized conductivities of unit cells used in the 
following section, cf. Fig. (5). The influence of the degree of 
heterogeneity on the resulting predictions is evident. 

3. MULTI-SCALE HOMOGENIZATION OF COU-
PLED HEAT AND MOISTURE TRANSPORT 

In this section, we continue with the selected example of 
Charles Bridge and extend the previous study to the multi-
scale modeling of coupled nonlinear transient heat and mois-
ture transport in masonry structures. While still adopting the 
first order homogenization approach (linear variation of 
macroscopic temperature and moisture fields is assumed) we 
choose, unlike the previous section, the finite element meth-
od (FEM) to solve the resulting system of partial differential 
equations. In the present study, these arise from the applica-
tion of a nonlinear diffusion model proposed by Künzel in 
[32, 33].The model is described by the energy balance equa-
tion 

 
Fig. (1). (a) Example of a masonry wall of Charles Bridge in Prague and (b) meso-structural window Ω provided in the form of 1, 600 × 735 
black-and-wide bitmap. 
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d𝐻
d𝜃

d𝜃
d𝑡

= 𝛁T [𝜆𝛁𝜃] + ℎ𝑣𝛁T�𝛿𝑝𝛁{𝜑𝑝sat(𝜃)}� , (12) 

and by the mass conservation equation 
d𝑤
d𝜑

d𝜑
d𝑡

= 𝛁T �𝐷𝜑𝛁𝜑� + 𝛁T�𝛿𝑝𝛁{𝜑𝑝sat(𝜃)}� , (13) 

where temperature θ and relative humidity ϕ are the two 
state variables. The model requires specifying the enthalpy 
of the moist building material H, the water content of the 
building material w, the coefficient of thermal conductivity λ, 

the liquid conduction coefficient Dϕ , the water vapor perme-
ability δp , the evaporation enthalpy of water hv and the water 
vapor saturation pressure psat . Details regarding the func-
tional dependence of the model parameters on temperature 
and relative humidity are available, e.g. in [32, 34]. 
 In [34] the authors noticed a significant dependence of 
the homogenized macroscopic properties on the applied 
temperature and relative humidity gradients. This finding 
promoted the solution of full scale analysis of masonry struc-

Table 1. Homogenized Thermal Conductivities in [Wm−1 K−1] 

 𝝀𝟐𝟐𝐡𝐨𝐦 𝝀𝟏𝟐𝐡𝐨𝐦 = 𝝀𝟐𝟏𝐡𝐨𝐦 𝝀𝟐𝟐𝐡𝐨𝐦 

Original mesostructure  
SEPUC 

0.2612 
0.2616 

0.0000 
0.0000 

0.2622 
0.2618 

Regular masonry 
Irregular masonry 

0.2856 
0.2932 

0.0000 
-0.0015 

0.2967 
0.2960 

 
Fig. (2). Determination of SEPUC for irregular masonry; (a) adopted parametrization and (b) optimal mesostructure with dimensions in 
[mm]. 

 
Fig. (3). Two-point probability function describing (a) target microstructure and (b) SEPUC (1 pixel corresponds to ∼ 2.6 mm). 
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tures in a fully coupled multi-scale homogenization frame-
work. To that end, a nested FE2 scheme, graphically present-
ed in Fig. (5) (see also [21, 22, 23] for more details), appears 
as a suitable method of attack. In such a case we expect the 
homogenized macro-scale fields to be found from the solu-
tion of a certain sub-scale (meso-scale) problem performed 
on an RVE loaded by the prescribed constant temperatures 
and moisture gradients. 
 As already mentioned in the introductory part, Larson et 
al. [22] have shown that assuming a non-stationary response 
also on meso-scale generates a non-local term in the homog-

enized macroscopic equations, which renders the macroscop-
ic response dependent on the RVE size. There is no dispute 
that performing the non-stationary analysis on both scales 
may considerably increase the computational cost making 
the numerical analysis prohibitively expensive even if ex-
ploiting parallelization. To reconcile these issues for a typi-
cal masonry material and RVE sizes is thus crucial for the 
success of analysis of full scale tree-dimensional models of 
historical masonry structures such as Charles Bridge. This 
will be the main topic of subsequent paragraphs addressing 
also the effect of loading, boundary and initial conditions. 

 

Fig. (4). Distribution of heat flux magnitudes  (in [Wm−1]) due to due to macroscopic temperature gradient ∂Θ/∂x2 = 1 [Km−1] in (a) 
original domain and (b) SEPUC. 

 
Fig. (5). Scheme of coupled multi-scale framework. 
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 Since irrelevant from the computational point of view we 
consider, henceforth, only the regular (PUC) and irregular 
(SEPUC) bonding of masonry displayed in Fig. (5). 

3.1. Theoretical Formulation 

 To begin, we adopt a variationally consistent homogeni-
zation outlined in detail in [22] starting with the assumption 
that a local field can be replaced by a spatially homogenized 
one 〈𝑎〉 such that 

∫ 𝑎 dΩ ≈ ∫ 〈𝑎〉□ΩΩ dΩ = ∫ � 1
|Ω□|∫ 𝑎 dΩ□ Ω□

�dΩΩ , (14) 

∫ 𝑎 dΓ ≈ ∫ 〈𝑎〉□𝛺Γ dΓ = ∫ � 1
|Γ□|∫ 𝑎 dΓ□ Γ□

�dΓΓ , (15) 

where Ω□ and Γ□ represent the internal and boundary parts of 
PUC. In what follows, for the sake of lucidity, we shall treat 
only the energy balance equation (12) which upon employ-
ing Eqs. (14) and (15) becomes 

∫ 〈𝛿𝜃 d𝐻
d𝜃

d𝜃
d𝑡
〉□  dΩ +Ω

∫ 〈𝛁δ𝜃T �𝜆𝛁𝜃 + ℎ𝑣 �𝛿𝑝𝜑
d𝑝sat
d𝜃

𝛁𝜃��〉□ dΩΩ +

+∫ 〈𝛁δ𝜃T�ℎ𝑣�𝛿𝑝𝑝sat𝛁𝜑��〉□dΩ− ∫ 〈𝛿𝜃𝑞�𝑣〉□dΓ = 0 .Γ𝜃
𝑞�Ω  (16) 

 In the spirit of the first order homogenization, it is as-
sumed that the macroscopic temperature and relative humidi-
ty vary only linearly over PUC. This can be achieved by 
loading its boundary by the prescribed temperature Θhom and 
relative humidity Φhom derived from the uniform macroscop-
ic temperature 𝛁Θ and relative humidity 𝛁Φ gradients. In 
such a case, the local temperature and relative humidity 
inside PUC admit the following decomposition 

𝜃(𝒙) = Θ(𝑿0) + 𝛁ΘT{𝒙 − 𝑿0} + 𝜃∗(𝒙) = Θhom(𝒙) +
𝜃∗(𝒙), (17) 

𝜑(𝒙) = Φ(𝑿0) + 𝛁ΦT{𝒙 − 𝑿0} + 𝜑∗(𝒙) = Φhom(𝒙) +
𝜑∗(𝒙), (18) 
where θ∗(x) and ϕ∗(x) are the fluctuations of local fields 
superimposed onto linearly varying quantities Θhom(x) and 
Φhom(x) . The temperature Θ(X0) and the moisture Φ(X0) at 
the reference point X0 are introduced to link the local fields 
to their macroscopic counterparts. For convenience, the PUC 
is typically centered at X0. Henceforth, the local fluctuations 
will be demanded to be periodic, i.e. the same values are 
enforced on the opposite sides of a rectangular PUC. This 
ensures the scale transition condition, see e.g. [21], which 
arises upon averaging the micro-temperature gradient over 
the volume |Ω| of PUC 

〈𝛁𝜃(𝒙)〉□ = 1
|Ω□|∫  𝛁𝜃(𝒙)dΩ(𝒙)Ω□

=

𝛁Θ + 1
|Ω□|∫ 𝛁𝜃∗(𝒙)dΩΩ□

(𝒙). (19) 

 Hence we demand the contribution of fluctuation fields to 
disappear upon volume averaging 

〈𝛁𝜃∗(𝒙)〉□ = 1
|Ω□|∫ 𝛁𝜃∗(𝒙) dΩ(𝒙)Ω□

=
1

|Ω□|∫ 𝜃∗(𝒙)𝒗(𝒙)dΓ(𝒙)Γ□
, (20) 

where ν stores the components of the outward unit normal to 
the boundary of PUC being directed in opposite directions on 
opposite sides of the PUC. 
 Next, substituting Eq. (17) into Eq. (16) and collecting 
the terms corresponding to δΘhom and δθ∗ splits the original 
problem (12) into the homogenized (macro-scale) problem 
and local sub-scale (meso-scale) problem. Since details on 
the derivation of equations driving the solution on individual 
scales have already been given in our proceeding works [10, 
23], we present only the result pertinent to the macro-scale 

−� 〈𝛿ΘT
d𝐻
d𝜃

d
d𝑡

(Θ + 𝛁ΘT{𝒙 − 𝑿0})〉□ dΩ
Ω

−
�����������������������������

�𝐂𝜃𝜃+𝐂𝜃𝜃
′ �d𝒓𝜃d𝑡

 

−� 〈𝛿𝛁ΘT{𝒙 − 𝑿0}
d𝐻
d𝜃

d
d𝑡

(Θ + 𝛁ΘT{𝒙 − 𝑿0})〉□ dΩ
Ω���������������������������������

−

�𝐂𝜃𝜃
′ +𝐂𝜃𝜃

′′ �d𝒓𝜃d𝑡

 

−� 〈𝛁δΘT �𝜆𝛁Θ + ℎ𝑣 �𝛿𝑝𝜑
d𝑝sat

d𝜃
𝛁Θ��〉□ dΩ

Ω�����������������������������
𝐊𝜃𝜃𝒓𝜃

−  

−� 〈𝛁δΘT�ℎ𝑣�𝛿𝑝𝑝sat𝛁Φ��〉□dΩ
Ω

 
���������������������

+

𝐊𝜃𝜑𝒓𝜑

� 〈𝛿ΘT𝑞�𝑣〉□dΓ 
Γ𝜃
𝑞������������

𝒒ext

= 0.  

 (21) 
to identify the solution dependence on the actual size of PUC 
through the second term in the integral (21). 
 An analogous approach can be applied also to the mois-
ture transport equation (13) to arrive, after classical finite 
element discretization, into a discretized system of coupled 
macroscopic heat and moisture equations 
𝐊𝜃𝜃𝒓𝜃 + 𝐊𝜃𝜑𝒓𝜑 + (𝐂𝜃𝜃 + 2𝐂𝜃𝜃′ + 𝐂𝜃𝜃′′ ) d𝒓𝜃

d𝑡
= 𝒒ext,       (22) 

𝐊𝜑𝜃𝒓𝜃 + 𝐊𝜑𝜑𝒓𝜑 + �𝐂𝜑𝜑 + 2𝐂𝜑𝜑′ + 𝐂𝜑𝜑′′ �
d𝒓𝜑
d𝑡

= 𝒈ext,    (23) 
which have to be properly integrated in the time domain 
adopting for example the Crank-Nicolson integration 
scheme. Details on the numerical implementation are availa-
ble in [34]. The homogenized matrices in Eqs. (22) and (23) 
follow directly from the meso-scale solution for a given 
macroscopic time increment. Because of a strong nonlineari-
ty arising on both scales the two problems (macro-meso) 
must be solved iteratively by the Newton-Raphson method, 
see [21, 22, 23] for further reference. 

3.2. Numerical Examples 

 A fully coupled multi-scale analysis of a two-
dimensional segment of Charles Bridge in Prague has been 
carried out in [23] with emphases on parallel computing. 
This study will be extended herein by quantifying the influ-
ence of the boundary, loading and initial conditions when 
moving down from the macro-scale to the meso-scale. 
3.2.1. Boundary Conditions 

To begin, recall Eq. (20) 

〈𝛁𝜃∗(𝒙)〉□ = 1
|Ω□|∫ 𝜃∗(𝒙)𝒗(𝒙)dΓ(𝒙)Γ□

= 0, (24) 
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being satisfied providing either the fluctuation part of the 
temperature field equals zero or the periodic boundary condi-
tions, i.e. the same values of θ∗ on opposite sides of a rectan-
gular PUC, are enforced on Γ□ . 
 Such conditions are easy to impose if searching the solu-
tion in terms of the fluctuation part of the temperature or 
moisture fields. The macroscopic constant gradients 𝛁Θ 
and 𝛁Φ, see Fig. (7a), are then directly used to load the unit 
cell [10]. However, this is mostly not possible with the ap-
plication of commercial codes. In such a case, the constant 
gradients are introduced by enforcing a linear variation of the 
homogeneous part of local fields Θhom(x), Φhom(x). This is 
achieved by prescribing directly the Dirichlet boundary con-
ditions along all edges of PUC, i.e. θ(x) = Θhom(x), ϕ(x) = 
Φhom(x) (see Fig. (7b)) are specified on the boundary Γ□ of 
PUC. The periodic boundary conditions are then prescribed 
with the help of multi-point constraints. 
 In doing so, observe in Fig. (6) that for a pair of points 
(e.g. A - master and a - slave) located on the opposite sides 
of PUC the following relations hold: 

𝜃𝐴 = �𝜕Θ
𝜕𝑦
� 𝑦𝐴 + 𝜃𝐴∗ + Θ(𝑿0),𝜃𝑎 = �𝜕Θ

𝜕𝑥
� 𝐿 + �𝜕Θ

𝜕𝑦
� 𝑦𝑎 + 𝜃𝑎∗ +

Θ(𝑿0). (25) 
 Taking into account the fact that the fluctuation field θ∗ 
satisfies the periodicity condition 

𝜃𝑎∗ = 𝜃𝐴∗ , (26) 
and subtracting corresponding terms on the opposite edges, 
we finally obtain (compare with [21] 

�
𝜕Θ
𝜕𝑥
� 𝐿 = 𝜃𝑎 − 𝜃𝐴 = 𝜃2 − 𝜃1, 

�𝜕Θ
𝜕𝑦
�𝐻 = 𝜃𝑏 − 𝜃𝐵 = 𝜃3 − 𝜃1,    (27) 

where θ1 , θ2 and θ3 are the temperatures at the control points 
1,2 and 3 seen in Fig. (6). The same conditions apply to the 
relative humidity ϕ as well. 
3.2.2. Loading and Initial Conditions 

 An illustrative example presented here considers a finite 
element mesh consisting of 108 macro-elements each repre-
senting a single meso-problem with assigned periodic 
boundary conditions. Its geometry together with the specific 

macroscopic loading conditions are shown in Fig. (5). 

 The initial temperature θin = 14 [°C] and the moisture ϕin 
= 0.5 [-] were assigned to the whole domain. The following 
boundary and loading conditions were imposed: the left 
boundary of the domain was submitted to exterior loading 
conditions θext = 5 [°C] and ϕext = 0.5 [-], while the opposite 
side was submitted to interior loading conditions θint = 24 
[°C] and ϕint = 0.8 [-]. Zero flux boundary conditions were 
assumed for horizontal edges. 
 The material parameters in Table 2 were obtained from a 
set of experimental measurements providing the hygric and 
thermal properties of mortars and bricks/stones, which have 
been used in the reconstruction works of historical buildings 
in the Czech Republic, see [10, 35]. 
 With reference to Section 3.2.1 we consider two types of 
loading conditions. Fig. (7a) assumes the loading in terms of 
macroscopic temperature and moisture gradients to provide 
local fluctuations upon submitting decompositions (17) and 
(18) into Hill’s averaging condition (consider for simplicity a 
steady-state heat conduction problem only)  

〈𝛿𝛁𝜃T𝒒〉 = 0, (28) 
to get 

〈𝛿𝛁𝜃∗T𝛌𝛁𝜃∗〉 = −〈𝛿𝛁𝜃∗T𝛌𝛁Θ〉. (29) 
 The periodic boundary conditions are then easily intro-
duced by prescribing the same code numbers, in the FEM 

 
Fig. (7). Different loading schemes of PUC on meso-scale: (a) prescribed macroscopic gradients (loading conditions I, labeled as NST1 ), (b) 
prescribed macroscopic temperatures and relative humidities (loading conditions II, labeled as NST2 ); (c) Assumed initial conditions. 

 
Fig. (6). Periodic boundary conditions. 
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language, to the homologous nodes on the opposite faces of 
the rectangular unit cell. Fig. (7b) then presents fully pre-
scribed Dirichlet boundary conditions applicable with com-
mercial codes when searching the solution directly in terms 
of the local fields θ, φ. The periodic boundary conditions are 
then enforced indirectly using Eq. (27). 
 Apart from loading conditions, the two types of initial 
conditions seen in Fig. (7c) are also examined. In particular, 
either a linear variation of the homogeneous part of fields 
θin(x) = Θhom(x), ϕin (x) = Φhom (x) is assumed or the macro-
scopic temperature θin(x) = Θ(X0) and moisture ϕin(x) = 
Φ(X0) calculated at the reference point X0 at the end of the 
current macroscopic time step are assigned to the whole 
PUC. Note that the former one arise naturally from Eqs. (17) 
and (18) when setting the fluctuation fields equal to zero at 
time t = 0 . 

 In the first example attention is dedicated to the solution 
of a coupled transient heat and moisture problem solely on 
the meso-scale. First, the regular periodic unit cell, PUC in 
Fig. (5), was loaded by the highest temperature and moisture 
gradients obtained in the course of actual multi-scale analy-
sis discussed later in this section. The following numerical 
values were considered; initial conditions (Θ(X0) = 17[°C], 
Φ(X0) = 0.15, 0.55, 0.85 [−]) and boundary conditions ({ 𝛁Θ 
= {∇xΘ, ∇yΘ} = {5.0, 1.0} [°Cm−1], 𝛁Φ = { ∇xΦ, ∇yΦ} = 
{0.1, 0.05} [m−1]). 

Meso-scale Analysis 

 Fig. (8) shows evolution of local temperature and mois-
ture fields along the horizontal centerline of PUC as a func-
tion of time derived from two types of loading conditions. 
Periodic boundary conditions and linearly varying initial 
conditions with Φ(X0) = 0.55 [-] were considered. It is shown 
that for the adopted extreme gradients the steady state solu-
tion, plotted as solid lines, is reached in about 15 hours irre-
spective of loading conditions. 
 Further to this subject, we also suggest invariance of the 
solution to the assumed initial conditions as depicted in  
Fig. (9). This becomes evident once realizing a nonlinearity 
of Eqs. (12) and (14) taken into account through the applica-
tion of Newton-Raphson iteration scheme. Clearly, the initial 
difference in the solution error attributed to the difference in 

initial conditions is wiped out already in the first load (time) 
increment upon arriving at equilibrium. 
 The influence of the degree of material nonlinearity of 
the present constitutive model is partially seen in Fig. (11) 
showing evolution of the selected effective material proper-
ties as a function of time for three values of initial macro-
scopic moisture Φ(X0).  
 Functional dependence of some material parameters on 
moisture is plotted in Fig. (10) for illustration. The complete 
set is available, e.g. in [34, 36]. It is evident that for effective 
properties the time to reach the steady state solution is con-
siderably shorter than for local temperatures and humidities, 
recall Fig. (8). It is even more important to realize that the 
difference between effective steady state parameters and 
effective parameters within a transient regime is essentially 
negligible. This can be attributed to a relatively small differ-
ence between local fields pertinent to steady state and vari-
ous stages of transient solutions as evident in Fig. (8). In 
other words, the material nonlinearity observed in Fig. (10) 
does not play in this case a significant role, thus promoting 
the steady state solution from the macroscopic point of view 
as sufficiently accurate. 
 Finally, to address the influence of the degree of material 
heterogeneity we repeated the same study employing the 
irregular periodic unit cell (SEPUC in Fig. 5). Figs (12a,b) 
show evolution of relative humidity along the SEPUC cen-
terline at various times clearly identifying the material 
boundaries. While the evolution trend is similar to the results 
presented in Fig. (8) for PUC, the time to attain steady state 
solution slightly increases. Evolutions of the selected effec-
tive moisture terms is plotted in Figs (12c,d) confirming 
again a negligible difference between steady state and transi-
ent analyses. While the degree of heterogeneity is pro-
nounced only slightly, the influence of initial conditions on 
the prediction of effective properties is significant. 

 Combining all the previous results suggests that for a 
reasonably small macroscopic time increment (from one to 
two hours sufficient to reach the steady state conditions on 
the meso-scale) the influence of non-local terms in Eqs. (22) 
and (23) should be negligible. Therefore, the macroscopic 
response should be invariant with respect to the adopted 

Multi-scale Analysis 

Table 2. Material Parameters of Individual Phases 

Parameter   Brick Mortar 

wf [kgm−3 ] free water saturation  229.30 160.00 

w80 [kgm−3 ] water content at ϕ = 0.8[-]  141.68 22.72 

λ0 [Wm−1K−1] thermal conductivity  0.25 0.45 

btcs [−] thermal conductivity supplement  10 9 

ρs [kgm−3] bulk density 1690 1670 

µ [−] water vapor diffusion resistance  16.80 9.63 

A [kgm−2 s−0.5 ] water absorption coefficient  0.51 0.82 

cs [Jkg−1K−1] specific heat capacity  840 1000 
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analysis carried out on meso-scale whether the transient or 
steady state. This is evident from the results plotted in  
Fig (13) showing the evolution of macroscopic temperatures 
and relative humidities at selected nodes of mesh, see Fig. 
(5). 
 This result is quite encouraging particularly with refer-
ence to the analysis of large historical structures, since 
avoiding a transient analysis on each mesoscopic unit cell 
may considerably reduce the computational cost. 

4. CONCLUSIONS 

 The present paper gives a brief overview of two particu-
lar aspects of the modeling of historical masonry structures, 

which show a certain degree of irregularity on the meso-
scale. This observation promotes application of so called 
Statistically Equivalent Periodic Unit Cell being sufficiently 
simple in comparison to, yet sufficiently representative of, a 
real masonry. This issue was addressed first in Section 2 to 
see that under steady state and linear conditions the degree of 
heterogeneity, associated with a given meso-structure, may 
not play a significant role in the prediction of effective mac-
roscopic response, recall Table 1. On the contrary, the mor-
phological details will become important once considering a 
nonlinear response crucially dependent on the actual distri-
bution of local fields. 

 
Fig. (8). Evolution of local fields (PUC): (a,b) temperature, (c,d) moisture; (a,c) Loading conditions I (Fig. 7(a)), (b,d) Loading conditions II 
(Fig. 7(b)). 

 
Fig. (9). Influence of initial conditions (constant or linearly varying homogeneous part of local fields); Evolution of effective moisture terms 
as a function of time: (a) effective conductivity term, (b) effective storage term. 
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 The latter comment was partially examined next in Sec-
tion 3 devoted to the nonlinear fully coupled multi-scale 
analysis of simultaneous heat and moisture transport. The 
principal result of this study is seen in the possibility of de-
riving the instantaneous, time dependent, macroscopic re-
sponse from a steady-state analysis performed on the lower 
scale reflecting all morphological details. However, keep in 
mind that this finding is strictly valid for the present problem 
being a collection of the selected climatic conditions, materi-
al composition and the assumed constitutive model, and 
should not be generalized. For other cases the theoretically 
predicted dependence of macroscopic response on the actual 
RVE size may prove non-negligible [22, 23]. 
 It is our present interest to exploit the two advancement 
in computational efficiency (SEPUC, steady state meso-scale 

problem) in the analysis of full scale 3D model of Charles 
Bridge. Special attention will be devoted to the implementa-
tion efficiency in the framework of hybrid parallel compu-
ting. 
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