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Abstract: A nonlinear finite element method with eight-noded isoparametric quadrilateral elements is used to predict the 
behavior of unreinforced masonry structures. The disturbed state concept (DSC) with modified hierarchical single yield 
surface (HISS) plasticity which is called DSC/HISS-CT is used to characterize the constitutive behavior of masonry in 
both compression and tension. The model uses two HISS yield surfaces for compressive and tensile behavior. The DSC 
model allows for the characterization of non-associative behavior through the use of disturbance. It computes microcrack-
ing during deformation, which eventually leads to fracture and failure. the critical disturbance, Dc, identifies fracture and 
failure. In the DSC model the DSC model was validated at two levels: (1) specimen and (2) practical boundary value 
problem. At the specimen level, predictions are obtained by integrating the incremental constitutive relations. The pro-
posed constitutive model is verified by comparing numerical predictions with results obtained from test data; the compari-
sons are found to be highly satisfactory. A new explicit formula is also presented to estimate the strength of unreinforced 
masonry structures. 

Keywords: Masonry wall, disturbed state concept, softening behavior, macro modeling, compressive behavior, tensile behav-
ior. 

1. INTRODUCTION 

 Masonry buildings are constructed in many parts of the 
world where earthquakes occur. Hence, knowledge of their 
seismic behavior is necessary to evaluate the seismic per-
formance of these types of buildings. Pushover analysis is 
commonly used to evaluate seismic performance and deter-
mine the capacity curve. Therefore, the capacity curve of 
unreinforced masonry buildings studied in this paper. 

 An approach for analysis of unreinforced masonry build-
ings is the macro-modeling of masonry as a composite mate-
rial. The macro modeling is more practice oriented due to the 
reduced time and memory requirements as well as a user-
friendly mesh generation. The compressive strength of a 
masonry unit is an important parameter in the analysis of 
unreinforced masonry buildings using the macro-element 
method. A masonry unit includes mortar joints and masonry 
bricks. The compressive strength for masonry units with 
different mortar was evaluated in previous researches [1-5].  

 SAP2000 v.10, a software package with a user-friendly 
interface which is widely used by practicing engineers, was 
used for the seismic analyses of masonry buildings [6]. Two 
unreinforced stone masonry walls in the Catania Project 
were modeled with SAP2000 v.10. The static pushover 
curves from the analyses were compared with predicted 
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results from the SAM code, which was developed by the 
University of Pavia, the Genoa research group and the 
Basilicata research group [6]. The Basilicata research group 
used a no-tensile-strength macro-element model with crush-
ing and shear failures while the Genoa research group used a 
finite element model with layer failures. The ultimate base 
shear force for wall A was predicted to be 1682 kN by the 
Genoa R.G., 1339 kN by SAP2000, 1115 kN by the SAM 
code, and 1395 kN by the Basilicata R.G. Accordingly, the 
ultimate base shear force for wall B is predicted to be 650 
kN by the Genoa R.G., 474 kN by the SAM code and SAP 
2000, and 508 kN by the Basilicata research group. These 
results show differences between the different studies. 
Hence, they may lead to the confusion of practicing engi-
neers, because they can not figure out which codes or re-
search results are the most applicable or precise. 

 The in-plane shear behavior of hollow brick masonry 
panels was evaluated [7]. The nonlinear behavior of masonry 
was modeled assuming elastic-perfectly plastic behavior, 
Drucker-Prager, of the mortar joint in the ANSYS 5.4 com-
mercial software. In other words, the micro-element method 
was used to analyze the panels. A comparison between the 
experimental results and numerical analysis shows good 
agreement. A macro-element approach to the three-
dimensional seismic analysis of masonry buildings was ap-
plied [8]. The full model displays a base shear force which is 
approximately 25% higher than the value calculated for the 
plane structure. Seismic fragility of an unreinforced masonry 
low-rise building was studied using a structural modeling 
method. The method utilizes a simple, composite nonlinear 
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spring. In this method, the wall is divided into distinct areas 
or segments. Each segment of the unreinforced masonry wall 
is then represented by a nonlinear spring, and the springs are 
assembled in series and in parallel to match the segment to-
pology of the wall [9]. Rota et al. [10] presented a new ana-
lytical approach for the derivation of fragility curves for ma-
sonry buildings. The methodology was based on nonlinear 
stochastic analyses of building prototypes. Monte Carlo 
simulations were used to generate input variables from the 
probability density functions of mechanical parameters.  

 The seismic performance of existing unreinforced ma-
sonry buildings in North America was considered in a state-
of-the-art paper [11]. The various failure modes of unrein-
forced masonry buildings subjected to earthquake excitation 
were described in the paper. The damage to the existing 
buildings for different earthquake scenarios was evaluated.  

 The static pushover curve was studied using the bound-
ary element method for unreinforced masonry walls [12]. In 
the analysis, a no-tension-material with an infinite strength in 
compression was adopted to model the masonry buildings. 
The predicted results showed good agreement with experi-
mental data.  

 Milani et al. [13] performed a three-dimensional ho-
mogenized limit analysis to determine the ultimate lateral 
load of full masonry structures. Linearized homogenized 
surfaces for masonry in six dimensions [14, 15] were ob-
tained and implemented in a finite element code. Compari-
sons between the predicted results from the 3D homogenized 
limit analysis and experimental data show an error of ap-
proximately 12%. Milani et al. [16] also used a 3D homoge-
nized limit analysis for full masonry buildings reinforced by 
FRP. The error between the predicted results and experimen-
tal data for a two-story masonry building is 4.6% in the ab-
sence of FRP and 9.4% in the presence of FRP. Milani [17, 
18] applied the 3D homogenized limit analysis to determine 
the limit load of a wall under in-plane and out-plane loading.  

 A simple equilibrium model was used to estimate the 
ultimate capacity of masonry shear walls. The model was 
based on strut-and-tie schemes representing the combination 
of the compression or tension stress fields at the ultimate 
condition. Comparisons between the performance of the 
model and experimental results for dry-joint and mortar-joint 
masonry show good agreement. [19] 

 A finite element analysis conducted for a single-story, 
one-room masonry building, with different aspect ratios and 
with different positions of wall openings, subjected to a 
seismic force with varying direction [20]. The response spec-
trum method was employed for the analysis. The predicted 
results show that the critical direction of seismic force for the 
development of maximum stresses in the walls of a room 
occurs when the opening is along the short wall of the room. 
It was also observed that the maximum principle tensile 
stress occurred in the short wall, and the maximum shear 
stress occurred in the long wall.  

 The analysis of unreinforced masonry buildings em-
ployed a two-step approach [21]. In step 1, the ultimate 

bending moment – shear force strength domains of the ma-
sonry spandrels were derived by means of a heterogeneous 
upper-bound finite element limit analysis. The results were 
stored in a database. In step 2, an equivalent frame model of 
the masonry wall was assembled. In the frame model, the 
spandrels were modeled as elastic Timoshenko beams. At 
each analysis step, a check was performed to determine 
whether the internal forces of these coupling beams were 
smaller than the failure loads stored in the database created 
in step 1. The shear force and bending moment capacity of 
the piers were simply estimated according to the Italian De-
sign code. The proposed analysis approach was appeared 
capable of deriving the pushover curve of unreinforced ma-
sonry walls [21]. A constitutive model was developed on the 
basis of homogenized anisotropic elasto-plasticity for analy-
sis of unreinforced masonry. The effect of anisotropy was 
introduced by a fictitious isotropic stress and strain space. 
The advantage of this model is that the classical theory of 
plasticity can be used to model nonlinear behavior in the 
isotropic spaces [22]. 

 A rigid-body numerical model was used to identify the 
minimum height-to-thickness ratio that would cause the wall 
to collapse when subjected to different out-of-plane ground 
motions [23]. The spectral accelerations of the ground mo-
tions were selected to be 0.24 g, 0.3 g, 0.37 g and 0.44 g. The 
model was calibrated using the results of full-scale shake 
table tests of a wall with a height to thickness ratio of 12 
[24]. The results of the analysis showed that when a wall is 
subjected to a spectral acceleration of 0.44 g. The probability 
of collapse for height-to-thickness ratios less than 10 is less 
than 1%. The ratios for spectral accelerations of 0.24 g and 
0.3 g are 18 and 15, respectively [23]. Therefore, walls with 
the conditions described above will be stabilized when sub-
jected to out-of-plane ground motions. More over the in-
plane strength of the wall will be important in resisting lat-
eral forces.  

 Akhaveissy [25] presented a new close form solution to 
determine the shear strength of unreinforced masonry walls. 
Predicted results show less error percentage than ATC and 
FEMA-307 [26]. The new explicit formula is based on re-
sults of proposed interface model by Akhaveissy [25]. Con-
sequently, the proposed closed form solution can be used 
satisfactorily to analyze unreinforced masonry structures. 

 The research results related to macro-modeling processes 
which discussed above show considerable differences be-
tween various methods of macro-modeling in comparison 
with test data [6].  

 The research described above on the numerical analysis 
of masonry walls shows that numerous researchers have 
modeled the behavior of masonry walls using the micro-
modeling approach which is suited for the analysis of small 
masonry walls. However, the macro-modeling approach can 
be used for the analysis of large practical problems. There-
fore, investigations into the use of macro-modeling, based on 
an appropriate constitutive law for the analysis of masonry 
walls, are recommended and are the focus of this paper. In 
this paper, the disturbed state concept and hierarchical single 
surface (DSC/HISS) model is modified to analyze masonry 



202    The Open Civil Engineering Journal, 2012, Volume 6 A.H. Akhaveissy 

structures in which different HISS single surfaces are used 
for the compressive and tensile behaviors of the masonry. 
The modified model is called DSC/HISS-CT, where CT de-
notes compression and tension. The base model (HISS) was 
introduced by [27-31]; a brief description is given below. 

 The DSC/HISS model is a unified and hierarchical model 
which can be used to characterize elastic, plastic and creep 
deformations, as well as micro-cracking that leads to fractur-
ing and failureing, degradating or softening, and healing or 
strengthening. It has been used to model a wide range of 
materials such as clays, sands, concrete, asphalt concrete, 
ceramic, metals, alloys and silicon, as well as interfaces and 
joints [31]. It has been implemented in nonlinear finite ele-
ment procedures to solve a wide range of engineering prob-
lems including two- and three-dimensional [31-33] and cy-
clic loading [31, 34, 35] problems. Thus, the DSC model has 
a number of advantages compared with other available mod-
els that often account for only specific behavioral aspect(s). 
The DSC/HISS models have also been used to model the 
behavior of concrete and rocks [28, 30, 31]. In this paper, the 
DSC model is used for unreinforced masonry structures. The 
new feature is the use of the HISS yield function for yield in 
both compression and tension.  

2. DISTURBED STATE CONCEPT WITH HISS 
MODEL  

 The following description of the DSC model is adopted 
from various publications, e.g., [27-31]. In this model, a de-
forming material element is assumed to be composed of two 
(or more) reference states, the relatively intact (RI) and the 
fully adjusted (FA) Fig (1). The material is assumed to be 
transformed continuously from the relative intact (RI) state 
to the fully adjusted (FA) state, Fig (1a), at randomly dis-
tributed locations under external excitations such as me-
chanical and thermal loading. The transformation involves 
micro-structural changes that cause particle reorientation and 
relative motions. The observed behavior is expressed in 
terms of the RI and FA states using the disturbance function, 
D, which acts as a coupling or interaction mechanism be-
tween the RI and FA states, Fig (1b). The disturbance grows 
as the material deforms and the plastic strain (or work) ac-
cumulates. Thus, DSC intrinsically includes coupling in 
which the micro-cracked (damaged) or fully adjusted part 
also contributes to the response of the material. The RI and 
FA states can be defined using various models. Continuum 
elasticity or plasticity can be used to model the response of 
the RI state while the FA state can be assumed to carry only 

 

Fig. (1). (a) RI and FA states in DSC, and (b) disturbance as a coupling between the RI and FA states. 
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hydrostatic stress or can be modeled using the critical state 
model [31]. Brief description of the models for the RI and 
FA states and the disturbance used in the DSC model are 
given below.  

2.1. Relative Intact (RI) State  

 The hierarchical single-surface (HISS) plasticity model 
[27] provides a general formulation for the elasto-plastic 
characterization of material behavior. It involves a single 
continuous yield surface compared with some previous mod-
els which involved multiple (discontinuous) yield surfaces 
that resulted in computational difficulties. This model which 
allows for isotropic and anisotropic hardening as well as 
associated and non-associated plasticity characterizations can 
be used to represent material responses based on the contin-
uum plasticity theory [27, 31]. In the HISS model, the RI 
state is usually defined by the associated plasticity; accord-
ingly, the yield function, F, Fig. (2), is given by  
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where  and  are the second and third invariants of 

the deviatoric stress tensor, respectively. J1 is the first invari-
ant of the total stress tensor,  is the atmospheric pressure, 
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Fig. (2).   and   are related to the ultimate condition. The 

hardening or growth function for the plastic yield can be 
expressed as 
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where  and 1a 1 are the hardening parameters, and   is the 

trajectory or the accumulated plastic strains. Using F, Eq. 

(1a), the incremental stress-strain equations for the RI (plas-
ticity) model are derived as [31]: 

 

Fig. (2). HISS yield surface in D21 JJ  space. 
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where   is the stress vector, is the elastic constitutive 
matrix, d denotes an increment, and  is the plastic poten-

tial function. When the associated flow rule is adopted, 

eC
Q

QF  .  

 The compressive stress is assumed to be positive for geo-
logic materials and masonry. The yield surface, F  is valid 

for compressive behavior in the positive D2J1J   space, 

Fig. (2). The behaviors of materials such as concrete and 
masonry are different under compression and tension; thus, 
the yield surface, Fig. (2), is not appropriate on the negative 

-axis. A ad hoc model such as the stress transfer approach 

[36], is often used. In this approach, the computed tensile 
stress above the tensile strength is redistributed in the zone 
of the problem. The HISS model can be used for both com-
pression and tension if the material parameters are deter-
mined from appropriate laboratory tests under compression 
and tension. A model, called DSC/HISS-CT can account for 
both compression and tension yield. The model was intro-
duced in [33, 37, 38]. However, DSC/HISS-CT has not yet 
been used for the unreinforced masonry practice buildings 
presented in this paper. Fig. (3) shows yield surfaces for 
compression and tension. As it can be seen, although the 
yield surfaces plotted in the same stress space for conven-
ience, are different from each other. Besides, their parame-
ters are determined from relevant compression or tension 
tests. The yield surfaces in tension and compression are ex-
pressed in stress space in terms of J1, J2D and J3D, which in-
clude all components of the stress vector in three-
dimensional space. A hierarchical single yield surface has 
also been implemented in nonlinear finite element proce-

1J

 

Fig. (3). Schematic of compressive and tensile HISS yield surfaces 

in J 1 - D2J  Stress Space [37]. 
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dures to solve a wide range of two- and three-dimensional 
engineering problems [31-33]. Therefore, the model can be 
used to analyze unreinforced masonry structures as 3D 
boundary value problems and can include the out-of-plane 
seismic effects.  

2.2. Fully Adjusted (FA) State 

 Various characterizations of the behavior of the FA state 
are given in Desai [31]. In a simple form, the FA state for 
masonry can be considered using residual stress in the stress-
strain curve response, Fig. (1b). Fully adjusted stress can 
also be based on approximately 20% of the compressive re-
sistance of masonry in uniaxial tests [2], and the residual 
stress has been considered as 14% of the compressive resis-
tance of masonry in uniaxial tests [39].  

Disturbance 

 Disturbance, D , can be defined in terms of measured 
stress, void ratio, pore water pressure, and nondestructive 
properties, such as P or S wave velocities [31]. In terms of 
stress, it is defined as:  

ci

aiD
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

  (4) 

where i , a and c are RI, observed and FA stress values, 

respectively. To introduce D in the DSC model, Eq. (6), it 
needs to be expressed in a mathematical form in terms of 
basic variables, such as accumulated plastic strains or work. 
Hence, D is expressed in terms of the accumulated deviatoric 
plastic strains using the Weibull [40] type function:  
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where  is the ultimate disturbance (often assumed to be 

unity), 
uD

D  is the trajectory of (deviatoric) plastic strains, and 

A and Z are disturbance parameters. The parameters in Eq. 
(5) are determined on the basis of the values of the measured 

a at various points on the stress-strain curve, Eq. (4), and 

the corresponding values of D .  

 Akhaveissy and Desai introduced a critical disturbance to 
show the failure zones [37, 38]. The value of the critical dis-
turbance, Dc, was assumed to occur at about 0.9. The critical 
disturbance showed that micro-cracking may start when the 
disturbance is about 0.003 for compression and about 0.0001 
for tension. Micro-cracks then grow and coalesce into cracks 
that lead to fracture or failure at the critical disturbance, Dc = 
0.9 [37, 38]. Thus, D can be used as a measure to identify the 
initiation and growth of micro-cracks (based on test data) 
that lead to fracture and failure. For example, when the dis-
turbance reaches 0.9 or higher values, fractures occur and 
grow. In finite element analysis, elements that reach this 
critical value are identified after each load increment; thus, 
the initiation and growth of fractures are provided progres-
sively by the computer procedure. In later applications, the 
contours of D are plotted based on the computational results, 
and the cracking and fracture are related to the values and 
extent of the disturbance. 

 Both the RI and FA states contribute to the material re-
sponse through disturbance (D) as the coupling function. The 
following DSC equations in incremental form show this 
coupling [31]: 
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where d denotes an infinitesimal increment, and ij is the 

stress tensor. The DSC model in this study is based on small 
strains. It can be modified by including large strains.  

2.3. Numerical Simulation of Masonry Prism Behavior 
Laboratory Tests (Fig. 5) 

 On 
the basis of a number of tests on masonry the following 
mathematical equations have been used by Kaushik et al.   
[1, 2] and Pandey and Meguro [39]:  

 

 

Fig. (4). (a) Compressive and (b) tensile behavior of a masonry prism. 
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For Compressive Behavior:  
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 Eq. 7(a) is Hognestad’s model for concrete’s compressive 
behavior [41]. Eq. 7(b) is a linear function between peak 
stress and residual stress. Eq. 7(c) is the residual stress that is 
assumed to be 20% of the peak stress. 
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 Eq. 7(d) is obtained from the elastic behavior of masonry 
in the tensile region up to the peak tensile stress. Softening 
behavior occurs after this point. This behavior is modeled by 
a linear function. Here, a linear function (Eq. 7(e)) is as-

sumed to determine the parameters of DSC for the softening 
behavior of masonry in tension. However, the DSC/HISS-
CT model accounts for the nonlinear behavior of masonry in 
the tensile region in terms of an exponential strain function 

(Eq. 5 and Fig 11). In Eq. 7,  is the compressive strength 

of a masonry prism, 
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shows schematic plots of Eqs. 7(a) to 7(c) for compression, 
and Fig. 4(b) shows the plot for tension. 

 Eqs. 7(a) to 7(c) are applied to construct the compressive 
behavior of masonry prisms. Similarly Eqs. 7(d) and 7(e) are 
applied to construct for the tensile behavior. In this sense, the 
stress-strain behavior used here is called “constructed” be-
havior.  

2.4. Determination of Parameters. 

 The DSC/HISS-CT parameters are determined based on 
Eqs. 7(a) to 7(c) for the compressive behavior of masonry 
prisms and Eqs. 7(d) and 7(e) for the tensile behavior. The 
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details on how to determine the parameters are given by 
Desai [31], Akhaveissy and Desai [37, 38] and Akhaveissy et 
al. [42]. Table 1 shows the parameters of the model for the 
compressive behavior of masonry prisms with compressive 

strengths  = 10.5 and 7.9 MPa, respectively. These values 

for  are chosen to be consistent with masonry prisms in 

later applications. Akhaveissy and Desai [37] determined the 
parameters of the model for the masonry prism with com-

pressive strength  = 10.5 MPa.  

'
mf

'
mf

'
mf

2.5. Specimen Level Validations  

 The model is validated at the element level by using the 
parameters in Table 1 and Eqs. (6) and (3a). At the specimen 
level, predictions are obtained by integrating the incremental 
constitutive relations, Eq. (3a). Akhaveissy and Desai [37] 
compare predicted results of the stress-strain curve from the 

model for the masonry prism with compressive strengths  

= 10.5 MPa and the constructed stress-strain curves by Eq. 7. 
Hence, the stress-strain curve obtained by the model the con-
structed curve are evaluated for the masonry prism with 

compressive strength  = 7.90 MPa. Fig. (5) compares 

predictions from the model of the masonry prism with com-

pressive strengths  = 7.9 MPa to the constructed stress-

strain curves by Eq. 7. 

'
mf

'
mf

'
mf

 It is clear from Fig. (5) that the results from the 
DSC/HISS-CT models match well with the observed behav-
ior based on the constructed compressive and tensile behav-
iors with different peak stresses, different softening region 
slopes and different residual stresses, Fig. (5).  

3. APPLICATIONS  

 Numerical simulations of masonry structures and load-
displacement responses are considered for masonry prisms 
with different compressive strengths. Computer programs for 
two-dimensional analyses [34] with the DSC/HISS model 

are available. In addition, a computer code that allows the 
use of the HISS yield surface for both compression and ten-
sion in masonry has been developed [42]. The iterative-
incremental method with an initial stiffness scheme was ap-
plied to analyze unreinforced masonry structures. This 
method yielded accurate and convergent results for the prob-
lems. However, the method can not predict the softening 
behavior of the displacement – load curve of structure. 
Hence, the method can be used to determine the linear and 
hardening behavior of the curve. It is noticeable that parts of 
unreinforced masonry wall can show the softening behavior 
[37]. The results of the nonlinear computer analyses are 
compared with the observed data below. 

3.1. A Masonry Shear Wall 

 The mechanical response of the masonry wall illustrated 
in Fig. (6) was simulated. Experimental tests on a masonry 
wall were carried out by Raijmakers and Vermeltfoort [43]. 
With regard to specimens with and without openings two 
series were tested. Here only windowed panel is considered 
for the sake of conciseness. The wall was made of wire-cut 
solid clay bricks with dimensions of 210 mm x 52 mm x 100 
mm and 10 mm thick mortar joints. The height/width ratio 
was 1. The dimensions of the wall were 1000 mm x 990 mm. 
Two stiff steel beams at the horizontal boundaries of the test 
setup clamped the top and bottom walls. The geometry of the 
model and the boundary conditions are shown in Fig. (6). 
The homogenization model was implemented to analyze the 
behavior of the masonry wall [17, 18]. It showed that the 
responses of the numerical model matched the experimental 
data. However, the masonry wall was analyzed with the 
DSC/HISS-CT model using the macro-modeling method. 

 Bricks and mortar joints are represented by 8-node plane 
stress continuum elements for the numerical analysis. The 
wall is modeled by 186 eight-noded isoparametric elements; 
the mesh has 1230 DOF. The value of the error for the dis-
placement convergence criterion was 5e-4. Fig. (7) shows 
the mesh that was used for the analysis of the wall and the 

 

Fig. (5). Comparison between predictions and data for (a) compressive and (b) tensile behavior of a masonry prism in Pavia test. 
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boundary conditions.  

 Fig. (8) shows a comparison between the load displace-
ment curve predicted by the DSC/HISS-CT model and the 
test data. The agreement between the predictions and the test 
data is considered to be good. The analysis of the wall by 
DSC/HISS-CT did not converge after point A in Fig. (8).  

 The initial slope of the predicted force-displacement 
curve from Fig. (8) agrees with the experimental data. It 
shows that the predicted elasticity modulus is essentially the 
same as that from the test data. The elasticity modulus for a 
compressive strength of 10.5 MPa is 7635 MPa, Table 1, 

which is 727 times ; the ratio given in FEMA 306 [45] is 

550. The International Building Code [46] and MJSC docu-

ments [47] recommend E to be 700 times , and the Cana-

dian masonry code S304.1 [48] recommends E to be 850 

times . Thus, the predicted ratio using the model proposed 

in this paper is within the range of reported values. 

'
mf

'
mf

'
mf

 

Fig. (6). Geometry of the masonry wall (dimensions in [cm]). 

 After point A in Fig. (8), the analysis in the model did 
not converge. Fig. (8) shows that the predicted ultimate load 
is about 46.8 kN, compared with 47 kN from the test data, or 
an error of about 0.4%. In addition, the disturbance parame-
ter for point A from Fig. (8) is shown in Fig. (9). A signifi-
cant part of the wall reached the critical disturbance around 
0.90. This result shows the failure of the wall. The maximum 
disturbance is 1.00. The predicted failure pattern in Fig. (9) 
shows that the collapse for both piers was occurred at dis-
placement equal to 14.2 mm, point A in Fig. (8). It is notice-
able that the value of the disturbance parameter for both 
yield surfaces in tension and compression is changed be-
tween zero to one. Hence, it is not possible to distinguish 
among shear, tensile and compressive cracking when the 
disturbance parameter is plotted. Therefore, the length of the 
tensile crack for piers may be evaluated as equal to the width 
of the piers. Hence, in the following, the lateral force is esti-
mated only based on the fracture length and the calibrated 
parameters that were obtained from the stress level analysis, 
Table 1. The cohesive strength for tensile behavior, Fig. (3), 
and the estimate of the lateral load for each pier based on 
proposed explicit formula [37] are 

N2202231980*335.020280*03.0C*T*F

N31980390*100*3.020280TPC
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

 

 Hence, the lateral resistant forced is for both piers as 

kN1.44N4404422022*2F2F 1   

 In the above calculation, t is the thickness and Lt is 
named the length of the tensile crack. The estimated lateral 
load is about 44.1 kN, compared with 47 kN from the test 

 
Fig. (7). The boundary conditions and mesh used for the analysis of the masonry wall. 
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Fig. (8). Comparison between the test data and the predicted load-displacement curve for the windowed masonry wall. 

 

Fig. (9). The variation of disturbance parameter for point A in Fig. (8). 

data, or an error of about 6.2%. Therefore, the resistant lat-
eral load may be estimated based on the length of the tensile 
crack. 

 The predicted failure pattern in Fig. (9) shows that the 
wall is collapsed under the lateral load equal to 46.8 kN, 
Point A in Fig. (8). Hence, successive predicted deformed 
shapes of the wall are evaluated in Fig. (10). The deformed 
shapes are in accordance with points A, B and C in Fig. (8). 

 Fig. (10a) shows the deformation of the wall for dis-
placement equal to 0.54 mm, point C in Fig. (8). It should be 
noted that the point C is on linear part of the curve. Hence, 
the plastic deformation should not be observed when the wall 
is subjected to the lateral load of the point C. Fig. (10a) 
shows the small deformation of the wall for the lateral load 
equal to the point C. However, deformed shapes for points B 

and A, Fig. (10b) and (c), show the plastic deformation for 
the wall. Fig. (10c) shows that the bottom of the left pier is 
collapsed due to combination of the shear stress and the ten-
sile stress. Likewise the right pier of the wall is collapsed 
due to combination of the shear stress and the compressive 
stress. The oblique vector on Fig. (10c) shows the direction 
of the deformation for the right pier. The deformation of the 
right pier implies the shear failure mode for the pier. It is 
noticeable that the corners of the window, Fig. (10c), are 
deformed due to the lateral load.  

3.2. A Two-bay, Two-story Building 

 A full-scale, two-story unreinforced masonry building 
tested at Pavia University was chosen for model validation 
[49]. This structure has been extensively investigated in the 
literature [50-52]. The building, with a 6*4.4 m floor plan 
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Fig. (10). Deformed shapes of the wall for different levels of the lateral displacement; the displacements are exaggerated by a factor of 5.  

and 6.4 m in height, contains an almost independent shear 
wall that is in-plane loaded. The wall considered here 
(named the “door wall”) is 250 mm thick and has two doors 
on the first story and two windows on second story, as 
shown in Fig. (11). The door wall includes two exterior piers 
and one interior pier. The exterior pier width and axial loads 
on the bottom and top levels are equal to 1.15 m, 56 kN and 
26.9 kN, respectively. The interior pier width and axial loads 
on the bottom and top levels are equal to 1.82 m, 133 kN and 
64.5 kN, respectively.  

 The properties of the structure used in the model are 
summarized below [50]: 

 The maximum compressive strength of a masonry prism, 
fm, is equal to 7.9 MPa. The joint tensile strength and the 
joint cohesion are 0.07 MPa and 0.14 MPa, respectively. The 
joint coefficient of friction is 0.55. The shear modulus is 
equal to the effective value, Geff = 90fm. The parameters for 

DSC/HISS-CT model were determined in Table 1. Calderini 
et al. [51] used the finite element method (FEM) to analyze 
the two-story unreinforced masonry building tested at Pavia 
University. The model included 2696 nodes and 5128 trian-
gular shell elements. The used mesh in present analysis by 
DSC/HISS-CT model is shown in Fig. (12). The mesh in-
cluded 1862 nodes and 496 eight-noded isoparametric ele-
ments. Fig. (13) shows comparisons between the present 
work and experimental data and numerical analyses [51]. 

 The predicted results were compared with results ob-
tained using the equivalent frame model and the Tremuri 
software [51]. The equivalent frame included 9 nodes, and 3 
nodes were fully constrained at the base. The reduce stiffness 
and full stiffness were used to analyze the building with the 
equivalent frame. Akhaveissy [52] also analyzed the door 
wall by the equivalent frame based on proposed close form 
solution [25]. 

 

Fig. (11). Door wall of the full-scale, two-story unreinforced masonry building tested at Pavia University. 

  
(a) Deformed shape for point 
C in Fig. 8 equal to 0.54 mm 

(b) Deformed shape for point 
B in Fig. 8 equal to 1.80 mm 

(c) Deformed shape for point A 
in Fig. 8 equal to 14.2 mm 
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 Fig. (13) shows that the equivalent frame–reduce stiff-
ness model predicted that the stiffness of the building would 
be lower than the real stiffness. The value of the ultimate 
base shear force from the Tremuri software was estimated to 
be 167 kN whereas the experimental value was determined 
to be 147 kN. The value of ultimate base shear force from 
the present work and from Belmouden and Lestuzzi [50] was 
predicted to be 154 kN and 138.4 kN, respectively. The finite 
element method estimate of the force was 157 kN. Fig. (13) 
shows a better agreement between the test data and the pre-
sent work than with equivalent frame models and finite ele-
ment method. To consider the damage to the structure, the 
disturbance parameter for the roof displacement in Fig. (13), 

point A, is evaluated in Fig. (14). It is noted that a distur-
bance parameter greater than 0.9 indicates failure. Crack 
patterns from the experimental test of the URM building at 
the failure state (a top displacement equal to 24 mm) show 
damage to the piers for the second story as sliding failure and 
the first story as diagonal crack as well as damage to the 
deep beam between doors and windows at the first floor [50]. 
The predicted failure of the piers for the second story and the 
predicted failure of the deep beams for both stories correlate 
with the observed data while the damage to the piers for the 
first story is not seen in the present work. It is noticed that 
the local failure occurred at the bottom of the piers for the 
first story. This difference is due to the dissipation of energy 
by the piers and the deep beams of the second story. Hence, 
the second story is as the instable floor at the displacement 
equal to 31.7 mm and the convergency of the analysis is not 
occurred for the base shear force larger than 154 kN. The 
deformed shape for point A in Fig. (13) is also plotted in Fig. 
(15). It should be noticed that form of deformation at the 
right corner of the roof is due to the concentration of applied 
lateral external load equal to 2F , Fig. (11). 

 

Fig. (12). The mesh used for the analysis of the two-story unrein-
forced masonry building tested at Pavia University.  

 The base shear force is estimated below based only on 
the explicit formula [37] and calibrated parameters that were 
obtained from the stress level analysis, Table 1. The strength 
lateral force is calculated for each of the piers, and the base 
shear force is estimated by minimum the sum of the strength 
forces of the piers for the first and second story. The strength 
lateral force is shown in Table 2. To determine the strength 
of the pier, the fracture length is assumed to be equal to the 
width of the pier [37]. Therefore, the cohesive strength for 
tensile behavior, Fig (3), and the estimate of the lateral load 
for the interior pier (Fi) and the exterior pier (Fe), are as fol-

Fig. (13). Comparison of the predicted results with experimental data for the two-story unreinforced masonry building tested at Pavia Uni-
versity. 
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Fig. (14). Damage levels for the URM structure from the present work for displacement at the roof equals 31.7 mm, point A in Fig. (13). 

 

Fig. (15). Deformed shape of the wall for the base shear force of the point A in Fig. 13; the displacements are exaggerated by a factor of 2 
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Table 2. The Ultimate Shear Force, F, for the Pavia Test 

Story Pier T(N) P(N) C(N) F(N) 

interior 47284 197500 244784 149868 
1 

exterior 29276 82900 112176 69478 

The strength shear force for the first story  288823 

interior 47284 64500 111784 72889 
2 

exterior 29876 26900 56776 38036 

The strength shear force for the second story  148960 

 It is noticeable that the strength shear force for the stories 
are calculated based on the sum of the strength forces for 
both exterior piers and interior pier, Table 2. Hence, com-
parison between the strength shear force for the first story 
and the second story show that the second story is collapsed 
sooner than the first story. Consequently, the ultimate shear 
force is equal to the strength shear force of the second story. 
The estimated lateral load based on the close form solution is 
about 148.96 kN, compared with 147 kN from the test data, 
an error of about 1.3%. Therefore, the resistant lateral load 
may be estimated based on the explicit formulation presented 
here.  

 The pushover curve in Fig. (13) provides also important 
information on the ultimate drift of the walls, which is useful 
to determine the pseudo ductility. In particular, the ultimate 

drift, u , is evaluated as the drift in relation of a shear 

strength degradation. The yield drift, y , is determined 

equating the areas under the equivalent bilinear 1DOF model 
and the actual capacity curve, as suggested by many codes of 
practice [53]. In the present case values of the ultimate and 
yield drifts are equal to 31.7 mm and 3.64 mm, respectively. 
The pseudo ductility  is hence determined as the ratio be-

tween ultimate and yield drift as: 

y

u


   (8) 

 From simulations results, the pseudo ductility for the 

building is 8.7. The deflection amplification factor, , can 

be determined through Newmark and Hall method [54] and 
is equal to 4.05. The over strength factor is also computed. It 
is equal to 1.85. The strength reduction factor due to the 
nonlinear hysteretic behavior is defined as the ratio between 
the elastic and inelastic strength demand, it is equal to 0.29.  

R

 Finally, the seismic modification factor is determined as 
the product between the deflection amplification factor, the 
over strength factor, and the strength reduction factor. Con-
sequently, in the present case, the seismic modification fac-
tor is equal to 2.17 which is comparable with experimental 
data. 

 

CONCLUSIONS 

 A nonlinear finite element method with eight-noded 
isoparametric quadrilateral elements for combined masonry 
blocks and mortar joints was used to predict the behavior of 
unreinforced masonry structures. The disturbed state concept 
(DSC) and the modified hierarchical single surface (HISS-
CT) plasticity model with associated flow rules were used to 
characterize the compressive and tensile yields of the ma-
sonry structures. The model can account for micro-cracking 
in the masonry which leads to softening and fracture. The 
HISS-CT plasticity model involves two separate yield sur-
faces for compressive and tensile yield; the continuous na-
ture of the proposed yield surface prevent computational 
difficulties in currently available discontinuous or multiple 
surfaces models, such as critical state and cap models [31]. 
The DSC model allows for the generation of discontinuities 
in the material microstructure during loading (unloading), 
and it does not require external enrichments to allow cou-
pling between continuous and discontinuous parts within the 
deforming material [55]. Moreover, the same framework in 
the DSC can be used to model the behavior of interfaces and 
joints [31]. 

 The DSC/HISS-CT model for masonry was validated at 
the specimen level. It was also applied successfully for a 
number of unreinforced masonry prism specimens. The 
computational predictions correlated well with test data and 
the constructed model. The model was also implemented in a 
finite element procedure to analyze the boundary problems. 
The model predictions for the masonry shear wall and the 
unreinforced masonry building with two stories correlated 
well with the test data. The model can predict the hardening 
and softening behavior of materials. In addition, a closed 
form solution was proposed based on the calibrated parame-
ters of the DSC/HISS-CT model. The closed form solution 
predicts the ultimate lateral load of an unreinforced masonry 
wall relatively well. Therefore, the DSC/HISS-CT model can 
be used satisfactorily to analyze masonry structures similar 
to those considered herein. 
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