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Abstract: A numerical FE homogenization approach for the interpretation of existing crack patterns induced by founda-
tion settlement on old masonry buildings is discussed. The approach is quite general and may be applied to any case 
study. It relies on a 3D FE discretization of the entire structure by means of rigid infinitely resistant six-noded wedge ele-
ments and non-linear interfaces, exhibiting deterioration of the mechanical properties. Soil is modeled by means of elastic 
translational springs, with values derived from at hand simplified approaches. 

The case study analyzed is the so called “Siloteca” [1] building in Milan, Italy, which belongs to a more complex built ag-
gregate, originally conceived by the French Napoleonic army as riding stable during the Cisalpina Republic. At present, 
the building is utilized as an archive within the Science and Technology Museum. The aggregate may be regarded as be-
ing subdivided into two separate blocks, with each one further sub-divided into eight isolated buildings. Nowadays, only 
six stables of one of the blocks are still present. Two of the six structures now serve as a Museum deposit and are the ob-
jects of the present study, whereas the other four are in worst condition, partially roofed and collapsed and in a general de-
cayed state. Siloteca exhibits meaningful crack patterns and an active overturning mechanism of the main façade.  

The masonry face texture is relatively regular and well organized; its section is constituted of three leaves of header 
bricks, one leaf being alternatively constituted by one-half brick. A quite large sub-vertical crack is present in the central 
long wall, at a distance of about 10 meters from the main façade, which is progressively rocking. The reason of the façade 
movements at the base is probably due to differential settlements of the foundation, as a consequence of a large excavation 
realized some decades ago to install large gas oil tanks for the museum. 

In this paper, for a direct mechanical interpretation of the reasons at the base of the formation of the crack pattern, a sim-
ple but effective fully equilibrated model is discussed, facilitating in the accurate prediction of the position of the cracks. 
The model is also utilized to estimate soil elastic vertical stiffness –within a Winker approximation- to be used in a second 
phase with the fully non-linear FE code. Once the soil constants are at disposal from such a procedure, a homogenized 
non-linear FE code recently proposed by the second author [2, 3] is utilized to have an insight into the state of mechanical 
degradation of the structure. A hypothesis on foundation settlement is provided to justify the crack maps exhibited by the 
structure.  

Keywords: Masonry, simplified damage evaluation, homogenization model, FEM, Case study. 

1. INTRODUCTION 

 Foundation settlement is a major cause of damage for 
existing masonry structures. In the most general cases, verti-
cal movements in foundations are caused by downward 
movement of a wall or wall footings. Vertical movements 
may be different for different walls, due to the presence of 
different soft soils, excavations, mining subsidence, applica-
tion of overloads to the structure, etc. 
 As a consequence of the very poor resistance of masonry 
in tension, a foundation settlement may result into the for-
mation of meaningful crack patterns, up to the activation of a 
failure mechanism, associated with the collapse of part of the 
structure. 
*Address correspondence to this author at the Dipartimento di Ingegneria 
Strutturale (DIS), Politecnico di Milano Piazza Leonardo da Vinci 32, 
20133 Milan, Italy; Tel: +39 022399 4290 4225; Fax: +39 022399 4220;  
E-mail: milani@stru.polimi.it 

 Apart from monitoring the evolution of the existing crack 
patterns, the use of numerical procedures appears quite inter-
esting aimed at the prediction of the crack wide opening evo-
lution. Such approach may become crucial when rehabilita-
tion interventions are planned in order to interrupt cracks 
spreading or rehabilitate completely the structure. 
 To be fully predictive, numerical approaches should take 
into account both the non-linear behavior of masonry and the 
effect induced by the soil on the structure. When dealing 
with this second aspect, a 3D FE model for the soil, assumed 
eventually as a non linear material, should be used, with a 
so-called “per phases analysis” in the presence of excava-
tions or mining subsidence problems. However, it is imme-
diately clear that the adoption of such approach would result 
into prohibitive computational costs to perform even a single 
non-linear analysis for small and medium scale buildings. 
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 The first aspect, i.e. masonry non-linearity, adds further 
complexity to the model. As a matter of fact, masonry is a 
composite material constituted by units, e.g. clay bricks and 
large natural blocks, and mortar joints. The variable dimen-
sion of units, joint width, the material properties of blocks 
and mortar, the arrangement of bed and head joints and the 
quality of workmanship, make the simulation of masonry 
structures extremely difficult. Moreover, an accurate mason-
ry description needs a complete set of experimental data. 
Two main approaches have been developed to describe ma-
sonry behavior over the elastic limit -which usually is ex-
ceeded at very low levels of external loads-, usually known 
in the technical literature as macro-modeling and micro-
modeling. 
 Macro-modeling does not make any distinction between 
masonry units and joints, averaging the effect of mortar 
through the formulation of a fictitious continuous material. It 
has been widely used in the past (e.g. no-tension material 
[4]), because it allows the rough discretizations necessary for 
actual large scale structures. Nevertheless, it appears really 
difficult to take into account some distinctive aspects of ma-
sonry, such as anisotropy in the inelastic range and the post-
peak softening behavior. In order to consider such aspects, 
some equivalent macro-models have also been presented [5-
7], featuring orthotropic elastic-plastic behavior with soften-
ing. However, the mechanical properties required are derived 
from experimental data fitting. 
 The alternative micro-modeling consists of representing 
separately mortar joints and units. Usually, joints are reduced 
to interfaces [8-10] in order to limit the computation effort. 
Nevertheless, the need of modeling separately bricks and 
mortar limits its applicability to small panels. 
 At present, the analysis of masonry walls in the inelastic 
range still requires macro-scale computational approaches 

conducted, e.g., through Fes [11,12]. Recently, efficient 
models based on homogenization have been presented [13-
20], which allow non-linear analyses of large scale struc-
tures, still considering both the real disposition of bricks and 
the actual mechanical properties of the constituent materials. 
Clearly, the numerical models applied at a structural level 
should be sufficiently simple, reliable and efficient to allow a 
quick evaluation of (a) collapse loads, (b) displacements near 
collapse and (c) post peak behavior of the structures.  
 Homogenization consists of extracting a representative 
element of volume (REV) which generates the whole struc-
ture by repetition, in solving a boundary value problem on 
the REV and in substituting the assemblage of bricks and 
mortar at a structural level with a fictitious orthotropic 
equivalent material. The most straightforward procedure is 
the utilization of FEs [15], assuming either elasto-plastic or 
damaging constitutive laws for units and mortar. Neverthe-
less, FEM requires a great computational effort, since the 
field problem has to be solved numerically for each loading 
step, in all Gauss points. 
 To contemporarily take into account the actual masonry 
non-linear behavior at a structural level and foundation set-
tlement in an approximate but effective way, with the appli-
cation of a very limited computational effort, a simplified 
homogenization method is used to substitute the heterogene-
ous assemblage of blocks and mortar with a macroscopic 
equivalent material through a simplified averaging proce-
dure. Soil is modeled within a Winkler approach, where the 
translational stiffness of the springs is evaluated by means of 
a simplified equilibrated procedure, where masonry walls are 
regarded as rigid bodies translating and rotating when sub-
jected to vertical loads.  
 The FE approach is tested on a real scale masonry struc-
ture exhibiting critical crack patterns, induced by a founda-

 
Fig. (1). Milan, part of the museum with the riding-stable “Cavallerizze” on the right and the “Siloteca stables” on the left. 
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tion settlement. The building under consideration is called 
“Siloteca” and is represented in Fig. (1) and Fig. (2). It is a 
historical masonry building with quite regular shape located 
in Milan, Italy. Siloteca is part of the so called 
“Cavallerizze” built aggregate, which owes its name to its 
original destination, being conceived by the French Napole-
onic army as riding stable during the Cisalpina Republic 
(beginning of 1800). At present, the building belongs to the 
Science and Technology Museum and is utilized as an ar-
chive. The aggregate may be regarded as being subdivided 
into two separate blocks, each one further sub-divided into 
eight isolated buildings. Nowadays, only six stables of one 
of the blocks are still present. Two of the six structures still 
present now serve as Museum deposit (Siloteca), whereas 
the other four are in worst condition, partially roofed and 
collapsed and in a general decayed state.  
 Within this research activity, a detailed photographic and 
graphical survey of the existent crack pattern has been con-
ducted. From geometric and photographic surveys, shared 
with visual inspection, a globally uniform character of the 
structural system of the Cavallerizze complex has been as-
certained. The masonry face texture is relatively regular and 
well organized; its section is constituted by three leaves of 
header bricks (thickness 60 cm, bricks dimensions approxi-
mately equal to Italian standard bricks, i.e. 250×120×55 
mm3), one leaf being alternatively constituted by one-half 
brick. The structural and architectural unitary of the com-
plex, can be extended also to the part now demolished, origi-
nally placed between the two bodies, as demonstrated by the 
residual parts of the walls interconnected with the edge walls 
of the Cavallerizze. 
 Siloteca exhibits an important crack pattern, with a clear 
partial detachment of the façade with part of the perpendicu-
lar walls and its progressive rocking, probably due to differ-
ential settlements near the façade foundation, resulting from 
a large excavation realized some decades ago to install large 
gas oil tanks for the museum. 

 In this paper, a simple but effective fully equilibrated 
model is discussed, proving useful to interpret the causes at 
the base of the formation of the crack pattern, and presenting 
the ability to predict quite accurately the position of the 
cracks. The model is also utilized to estimate soil elastic 
constants –within a Winker approximation- to be used in a 
second phase within a fully non-linear FE code. The at hand 
model is constituted by a rigid block subjected to self-weight 
and dead loads actually present in the building, reactions 
forces of the soil and internal actions on the section subject-
ed to cracking. Crack position is sidelined as unknown prob-
lem and is determined for checking the maximum state of 
stress present within masonry. The knowledge of the actual 
position of the cracks allows, by means of direct displace-
ment identification with experimental data, an analytical 
evaluation of foundation stiffness.  
 Once soil elastic constants are at disposal from such a 
procedure, the overall Siloteca stable is considered and a 
homogenized non-linear FE code [2, 3] is utilized to have an 
insight into the state of mechanical degradation of the struc-
ture. A hypothesis on foundation settlement is provided to 
justify crack maps exhibited by the structure.  

2. DESCRIPTION OF THE MATERIALS AND 
STRUCTURAL DEGRADATION OF SILOTECA AND 
CAVALLERIZZE BUILDINGS 

 The crack pattern present in the Siloteca building (Figs. 3 
and 4) is characterized by a quite meaningful sub-vertical 
crack on the central wall (front B and B’), combined by a 
series of cracks on the walls belonging to fronts E, E’, E’’, 
E’’’. After a careful historical analysis of the construction, it 
has been deduced that, most probably, such crack pattern has 
been determined by a settlement of the foundation soil inter-
secting the zones near fronts E and E'''. In addition, a local-
ized settlement intersecting the corner between fronts A' and 
E is visible. Differential settlement is consequent to an exca-
vation realized near fronts E and E''' to host two large Diesel 

 

Fig. (2). Siloteca: -a: principal front; -b: Plan sketch with indication of the different views representing the existent crack pattern. 
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oil tanks, subsequently further aggravated by water infiltra-
tions on foundation level. 
 The failure mechanism on the building, at present almost 
active, is an overturning of the façade, with partial detach-
ment and in-plane rotation of the perpendicular walls A, B 
and C. A wide crack is indeed present on central and lateral 
perpendicular walls, see Fig. (5), still active and now moni-
tored experimentally to evaluate the damage evolution. 
 A schematic representation of the dimension of the exca-
vated zones and the tanks, deduced from the documentation 
available is sketched in Fig. (6). 

 To further support the conclusion that the differential soil 
settlement is the main cause of the existent crack pattern, it is 
worth noting that front D and walls A, B and C far from the 
excavation zone do not present meaningful cracks. 

3. ANALYTICAL INTERPRETATION OF THE 
CRACK PATTERN, WALL B 

 A simple analytical interpretation of the causes at the 
base of the formation of the crack pattern now visible on 
wall B, may be obtained evaluating, by means of simple 
equilibrium relations, the variation of the state of stress along 

 
Fig. (3). Crack pattern, fronts E 

 
Fig. (4). Crack pattern, fronts A and B. 
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the wall consequent to a decrease of the pressure transferred 
by the soil to the front wall E. 
 With good approximation, such decrease near the exca-
vation area results in a global redistribution of the pressures 
transferred by the soil, as schematically depicted in Fig. (6). 
In particular, in Fig. (6), pressure distributions assumed in 
the analytical model proposed in the following section before 
and after the excavation are compared. While such distribu-
tions are merely hypothetical, according to authors’ experi-
ence in this field they seem quite reasonable.  
 The area where the pressure transferred is assumed null 
that has been geometrically determined knowing position, 
area and depth of the excavation. Assuming for the soil a 
friction angle Φ equal to 26°, all the soil contained between 
the excavated area and a plane inclined to the horizontal di-
rection with angle of inclination equal to 2/45 Φ+°  is as-
sumed to be unable to sustain structure gravity loads, signi-
fying that a pressure equal to zero has to be assumed there. 
 From Fig. (6), where the zones unable to sustain masonry 
gravity loads are graphically determined, it is pretty clear 
how the soil under the principal front wall is totally unable to 
withstand vertical loads in the central region, however grad-
ually increasing load carrying capacity near the edges. The 
pressure variation from zero (central point) to the undis-
turbed value (lateral edges) is hereafter assumed linear for 
the sake of simplicity.  

Such a redistribution of soil pressures requires that the main 
front wall is in equilibrium, thanks to the interlocking with 
perpendicular walls, but developing on the same perpendicu-
lar walls, through the schematization by means of a cantile-
ver beam behavior, non-negligible bending. The existent 
crack pattern on such walls suggests that the visible pseudo-
vertical cracks under the roof are consequent to a bending 
behavior of wall B, thus a-posteriori confirming the simpli-
fied hypotheses assumed here. 
 Also the visible crack on the lateral part of the front wall 
A, while less wide, shows analogous origin.  
 On the contrary, no meaningful cracks are visible on 
edge wall C, probably for an eccentricity in the excavation 
zone present in reality. The different damage level of wall B 
with respect to the other transversal walls may be easily ex-
plained considering that central wall B is both subjected to 
higher dead loads and very close to the excavated area, espe-
cially at the intersection with the main front E. 

4. SIMPLIFIED EVALUATION OF INTERNAL AC-
TIONS ON MASONRY WALLS 

 As a consequence of the modified distribution of soil 
pressures, also internal stresses on masonry walls modify. A 
simplified evaluation of the internal stress distribution con-
sequent to soil pressures re-distribution may be obtained 
assuming that the following hypotheses hold, see also Fig. 
(7): 

 
Fig. (5). Detail of the sub-vertical crack at the top of lateral wall B, fronts B and B’. 

 
Fig. (6). Graphical evaluation of the zones unable to transfer vertical pressure sustaining gravity loads. 

cantilever
stone

 crack

 L1=9,0 m  L3=3,0 m  L5  L3=10,0 m L4  L5 L4

h
w

=
6,

8 
m

 h
f=

1
,5

 m

h
m

=
8

,0
 m

 h
f=

1
,5

 m



220    The Open Civil Engineering Journal, 2012, Volume 6 Acito and Milani 

 

• In the phase preceding the excavation, the equilibrium 
condition under dead loads (masonry self-weight and 
roof loads) is uniform, having assumed shear and bend-
ing actions acting in the plane of the walls equal to zero. 
Whilst this is a quite debatable hypothesis, it seems rea-
sonable for the problem at hand, due to the regularity of 
the building. Elastic analyses conducted through a 
commercial code essentially confirm the effectiveness of 
such hypothesis. 

• As a consequence of the excavation, the soil pressure 
near such region decreases. From a kinematic point of 
view, such a static assumption could be a-posteriori ver-
ified reducing the stiffness of the springs representing 
soil within a Winkler approximation. 

• As a consequence of the different pressures transferred 
by the soil to the structure, it is further assumed that on 
vertical sections belonging to walls A, B and C shear 
and bending actions act. 

• Masonry self-weigh in correspondence of the zone 
where soil pressure is kept equal to zero, is transferred 
to the contiguous walls by means of compressed struts 
belonging to wall E middle plane (see Fig. 6). 

 The vertical weight of the roof considered in the calcula-
tion is equal to 1.4 kN /m2, whereas for masonry a specific  
weight equal to 1.8 kN/m3 is assumed. Both are typical val-
ues for existing masonry structures with light roofs. 
 Within these hypotheses, a reduction of the soil pressure 

in correspondence to wall E and B intersection is assumed. 
To maintain walls in equilibrium, for any vertical section 
drawn on wall B, non-null bending moment and vertical 
shear are present. With simple equilibrium equations (verti-
cal translation and rotation) it is possible to evaluate both 
bending moment M and shear V values at different positions 
of the vertical section with respect to wall E. Results of the 
analytical calculations, performed easily with an Excel sheet, 
are reported in Fig. (8). From an analysis of the figure, it is 
interesting to notice that M reaches a maximum at around 12 
meters. Big bending moments are associated to big values of 
tensile stresses, meaning that M is a useful diagram to check 
the approximate position of the vertical cracks. Finally it is 
interesting to notice that V exhibits a maximum at 2.5 meters 
and is zero at 12 meters, in agreement with the bending mo-
ment diagram (M convex for x<2.5 and maximum value at 
12 meters). 
 In Fig. (9), maximum tensile stress on vertical sections 
belonging to wall B at a distance x from the façade is depict-
ed. For the sake of simplicity, the diagram is plotted assum-
ing an elastic behavior for the sections, meaning that the 
maximum stress may be simply evaluated as M/J*H/2, 
where M is the bending moment, J the inertia and H the 
height of the section respectively. 
 The diagram of the maximum tensile stress in Fig. (9) 
shows visible peaks where actually the sub vertical crack 
activated. Local peaks correspond, obviously, to sections 
sssswwith reduced area, i.e. where the large stones used to 

 
Fig. (7). Gravity loads resultant forces, section bending moment and soil reaction for the central wall. 

  
Fig. (8). Wall B. values of bending moment (-a) and shear (-b) at different distances from perpendicular wall E. 
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support the timber truss structure are placed, see Fig. (5). 
 The maximum traction value is largely higher than the 
masonry peak resistance along the horizontal direction, even 
considering the orthotropy of the masonry material [17], 
having for this kind of masonry typical values ranging be-
tween 0.4-0.9 MPa, see following Section for homogenized 
numerical calculations. 
 After the activation of the crack at the extrados of the 
wall, the linear elastic hypothesis for the wall is not valid 
anymore and a more complex material model should be 
used. In any case, the simple equilibrium model proposed is 
able to predict with good approximation the position of the 
cracks. 

4.1. Evaluation of the Soil Stiffness for Wall B 

 When the hypothesis to model the soil by means of 
equivalent elastic Winkler vertical springs is made, an ana-
lytical estimation of soil springs stiffness is possible by 
means of direct identification with experimental data on 
measured cracks wide. While this may be rather debatable, it 
is without any doubt the most straightforward and less ex-
pensive approach that may be proposed. 
 To estimate the soil stiffness for wall B to use within the 
non-linear numerical FE code, the following hypotheses 
have been assumed: 
• As a consequence of the excavation, the pressure change 

is assumed due to a decrease of the Winkler stiffness of 
the linear elastic springs representing the soil. The ma-
sonry building is considered much more stiff than the 
soil and, at a first glance, its movement on the founda-
tion is characterized by only three degrees of freedom 
per wall, namely two in-plane translations and an in-
plane rotation. 

• The stiffness of the soil springs under walls A and C is 
assumed always equal to the undisturbed state stiffness 
k1, with a progressive linear decrease up to zero under 
the façade subjected to overturning. 

• The maximum measured opening of the sub-vertical 
crack on wall B (at the top under the roof) is assumed 
equal to wmax=10 mm, in agreement with measured data. 

Under such hypotheses, the rotation θ  of the portion of wall 

B between the crack and wall E is equal to θ = wmax

L
. For 

L1 ≤ z ≤ L1 + L2  σ (z) = k1zθ , whereas for 0 ≤ z ≤ L1  

σ (z) = k(z) ⋅θ ⋅ z
L1

=
k1 ⋅ (L1 + L2 − z)

L2

⋅θ ⋅ z . Hence, the result-

ant bending moment with respect to axes origin, see Fig. (7) 
is constituted by two contributions, namely M1 and M2, re-
spectively the bending moment of the springs having stiff-
ness equal to k1 and M2, with linear stiffness variation from 0 
to k1: 

M 1= σ (z) ⋅B ⋅ z ⋅dz
0

L1

∫ = k1 ⋅ z ⋅ϑ ⋅B ⋅ z ⋅dz
0

L1

∫ = k1 ⋅
L1

3

3
⋅θ ⋅B (1) 
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3 3
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   ++   − −
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   +   −
      

∫   

 Striking an equilibrium with dead and live loads 
M1+M2+MM equate gravity loads of the structure, being in-
dicated by MM masonry resistant bending moment on the 
cracked section positioned at 11 m from the façade. From 
such equation, it has been calculated that the value of k1 for 
the particular case under investigation is equal to 0.8 N/mm.  

5. NUMERICAL HOMOGENIZED NON-LINEAR 
MODEL 

 The analytical solutions obtained with the equilibrated 
closed-form model previously described, especially when 
dealing with the values to assume for the stiffness of the 
equivalent Winkler springs have been utilized within exist-
ing FE non-commercial software, suitable for the analysis of 
complex masonry structures in the non-linear range. 
 The homogenization proposed, e.g. [16], pertains to run-
ning bond non-strengthened masonry, regarded as an assem-
blage of bricks interacting through interfaces (mortar joints). 
Bricks are assumed to be infinitely resistant, whereas for 
joints a Mohr Coulomb failure criterion with tension cut-off 
and compressive limited strength is adopted. In this way, a 
full description of the model can be given at a micro-scale 
considering a representative volume REV constituted by a 
generic brick interacting with its six neighbors, see Fig. (10). 
A sub-class of possible elementary deformation modes act-
ing in the unit cell is a priori chosen in order to describe 
joints cracking under normal, tangential actions and bending. 
Then, a numerical procedure of identification between the 
3D discrete system and a continuum 2D equivalent model is 
proposed, equating internal work expended by the two mod-
els. 

 

 
Fig. (9). Wall B, maximum tensile stress on vertical sections at a 
distance x from the perpendicular wall E. 
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5.1. Heterogeneous and Macroscopic Homogeneous 
Model 

 In the heterogeneous model, the whole REV is meshed 
through six-noded wedge elements interconnected by inter-
faces (internal brick-brick interfaces and mortar joints, see 
Fig. 10-a). The motion of a generic element E , see Fig. 
(10), is described as a function of its centroid ( CE ) dis-
placement vector uE  (components uxx

E , uyy
E  and uzz

E ) and of 

its rotation vector EΦ  (components Φxx
E , Φyy

E  and Φzz
E ) 

around centroid.  

 When two contiguous bricks M  and N  are considered, 
the displacement of a generic point P  in a position 12Γ∈ξ  
belonging respectively to M  and N  (where 12Γ∈ξ  indi-
cates the common interface between the two elements) is: 

( ) ( )( )M M M MP P C= + −u u MΦ  

( ) ( )( )N N N NP P C= + −u u MΦ  (3) 

Where ( )MΦ = =

0 −Φzz Φyy

Φzz 0 −Φxx

−Φyy Φxx 0



















 

 Jump of displacements U P( )   between bricks M  and 
N  in a point 12Γ∈ξ  is expressed by: 

( )  ( ) ( )
( )( ) ( )( )NNMM

NMNM

CPCP
PPP

−−−+

+−==

ΦMΦM
uuuuU -  (4) 

 When dealing with the continuous model, a standard 
Cauchy bi-dimensional continuum, Fig. (10-a), is consid-

 

Fig. (10). -a: FE discretization of the REV. –b: Rigid infinitely resistant six-noded wedge element used for the REV discretization.-c: Γ12  
interface between contiguous elements. –d: Modified Mohr–Coulomb criterion for the mortar joint reduced to interface (left) and harden-
ing/softening law in compression (right) as a function of the inelastic parameter κ 3 . 
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ered. Here the global frame of reference is identified by the 
vectors 1x , 2x  and 3x . 

 The displacement field of a point P (coordinates 
[ ]PPP xxx 321 ) belonging to the equivalent continuum 

plate is given by fields ( )xw  (components 1w , 2w  and 

3w ) and ( )xΨ  (components 1Ψ  and 2Ψ ), representing 
respectively the displacements and rotations of the plate in 
correspondence  with the point [ ]021

PP xx=x   lying in the 
middle plane of the continuum regarded as a plate (i.e. with 
two dimensions much bigger than a third one, the thickness). 

 For in- and out-of-plane loads, membrane forces vector N 

(components 11N , 12N  and 22N ), moments M (bending 11M , 
22M  and torsion 12M ) and out-of-plane shear T  (compo-

nents 13T  and 23T ) contribute to the internal work. In particu-
lar, the work dissipated by an equivalent plate model is 
simply: 
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where E is the in-plane strain vector, χ  the out-of-plane 
strain vector and γ the out-of-plane shear strain. 

5.2. Simplified Homogenization 

 To substitute the heterogeneous material with the homo-
geneous equivalent 2D model, a simple, compatible identifi-
cation model is proposed [21], where the work expended by 
the blocks model, is equated to the work (5) by the equiva-
lent model.  

 Here, fields ( )xw  and ( )xΨ  are apriori chosen as a 
combination of elementary deformations in the unit cell, 
corresponding to actual failure mechanisms occurring, ac-
cording to experimental evidences, in the presence of run-
ning bond brickwork with weak joints reduced to interfaces. 
From a practical point of view, fields ( )xw  and ( )xΨ  
corresponding to each sub-class of regular motions are ob-
tained assuming alternatively one component of vector E , 
χ  or γ  unitary and setting all the other components equal 
to zero, subsequently choosing the most simple polynomial 
expressions for ( )xw  and ( )xΨ  which comply with the 

compatibility equations. Once fields ( )xw  and ( )xΨ  are 
known from the procedure described, rotations and dis-
placements of each element belonging to the REV in the 
heterogeneous model are determined solving a boundary 
value problem on the REV where displacements (or dis-
placement increments) on the boundary are imposed.  

 For instance, when only 11χ ≠0 is applied on the REV, a 

choice for ( )xw  and ( )xΨ  fields is: 

1111 xχ=Ψ  
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 (6) 

 The application of equation (6) to the heterogeneous 
model permits to directly determine displacements to apply 
to the boundary surfaces of the REV.  

 Brickwork behavior in flexion is obtained by integration 
of in-plane actions at a structural level, therefore, at the mi-
cro-scale it is possible to limit the study to in-plane and out-
of-plane shear actions ( E , γ  respectively).  

5.3. Non-linear Behavior of the Interfaces at a Meso-
Level 

 At the meso-scale level, joints behave basically as 
Lourenço & Rots [22] interfaces. Their behavior is essential-
ly elasto-plastic and bi-dimensional, exhibiting softening.  
 The macro-scale behavior is obviously different because 
of the utilization of homogenization concepts to derive the 
macroscopic stress-strain relationship of the interfaces. 

 We denote with Eb and Em the elastic moduli of bricks 
and mortar respectively and we consider a masonry pillar 
constituted by two half bricks (height: H/2) and a central 
mortar joint (thickness: eh). It has been shown by Lourenço 
& Rots [22] that, by making the deformation of the actual 
pillar equal to a simplified one constituted by elastic bricks 
(height: H/2+eh/2) and a joint reduced to interface, the stiff-
ness nk  of the interface is equal to 

( )mbh

mb

EEe
EE
−

. The same 

consideration may be repeated for the shear stiffness tk , i.e. 

( )mbh

mb
t GGe

GGk
−

= having defined bG  and mG  as brick and 

mortar shear moduli. 

 Brick-brick interfaces connect rigid elements having the 
same material properties. An elastic-perfectly plastic materi-
al is assumed for bricks (Mohr-Coulomb failure criterion). It 
is also assumed that the common edge 12Γ  is subdivided 
into rectangular small elements of area eA

12Γ
. Following Ka-

wai [23], at each area eA
12Γ  pertains to an axial spring with 

stiffness nk  and 2 mutually orthogonal shear springs 1tk  

and 2tk . From Kawai [23], their stiffness may be evaluated 

as ( )
e
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where bν  is the Poisson’s ratio, MH  and NH  are heights of 
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triangles MPPP 54  and NPPP 54  with respect to 45L  [3] and all 
the other symbols have been already introduced. 

 For a mortar interface, the elastic domain is, in the most 
general case, bound by a composite yield surface that in-
cludes tension, shear and compression failure with softening 
(see Fig. (10-d). A multi-surface plasticity model is adopted, 
with softening in both tension and compression.  
 For multi-surface plasticity the form of the elastic do-
main is defined by each i-th yield function 0≤if . Let us 
consider a planar mortar interface and a point on the inter-
face where a normal stress σ  and two mutually perpendicu-
lar shear stresses 1τ  and 2τ  act. 

 The i-th yield functions are of the form 
( ) ( ) ( )ii2,1,ii,2,1,if κΨ+ττσΦ=κττσ , where scalar iκ  

rules the amount of softening of the i-th yield surface and 
iΦ  and iΨ  are generic functions representing respectively 

the initial i-th yield surface and the correction which ac-
counts for the evolution of the strength during the inelastic 
deformation process.  
 The usual elasto-plastic equations for single surface plas-
ticity hold; assuming the hypothesis of small deformations, 
the total strain rate ε  is decomposed into an elastic compo-
nent elε and a plastic component plε . The elastic strain rate 
is related to the stress rate by the elastic constitutive matrix 
D= { }ttn kkkdiag  as elεDσ  = , whereas the non-

associated plasticity assumption allows to link plε  with iλ  

as 
σ
gε i

ipl ∂
∂

λ= , where ig  is the plastic potential corre-

sponding to the i-th yield surface (which rules the direction 

of plε  in the stress space) and [ ]T21σ ττσ= . In classic 

non-associated plasticity ig  may not coincide with if . 

 For any corner of the proposed model two yield surfaces 
are active and the previous equations must be suitably stated 
for multi-surface plasticity. Details can be found in, e.g. [22]. 
 In order to model the failure of the joint, a classical 
Mohr–Coulomb type strength criterion is used with a tension 
cut-off and a linear compression cap, Fig. (10-d). The pa-
rameters ft and fc are, respectively, the tensile and compres-
sive Mode-I strength of the mortar or mortar–brick interfac-
es, c is the cohesion, Φ  is the friction angle, and Ψ  is the 
angle which defines the linear compression cap. 

 For the tension mode, exponential softening on the ten-
sile strength is assumed according to the mode I experiments 
conducted by many authors. The yield function reads: 

( ) ( )111 , κσκ tff −=σ  (7)  
where the yield value ( )1κtf  deteriorates in agreement with 
the following formula: 
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where 0tf  is the initial joint tensile strength and I

fG  is the 
mode I fracture energy. An associated flow rule is assumed 
here.  
 When dealing with the shear mode, a Mohr-Coulomb 
yield function is adopted: 

( ) ( ) ( )2222 ctan,σf κ−κφσ+τ=κ  (9)  

where 2
2

2
1 τ+τ=τ  and the yield values c  and φtan  are 

ruled by the following formulas: 
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2II
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G
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 (10) 

with 0c  and 0tanφ  being the initial cohesion and friction 

angle, II
fG  is the mode II fracture energy and rφtan  is the 

residual friction angle, hereafter kept always equal to 75% of 
the initial one. A non-associated flow rule is assumed here, 
with τ=2g .  

 When dealing with the linearized compressive cap, a 
three function model as the one proposed in [22] is utilized. 
The typical hardening/softening behavior of the law adopted 
is shown in Fig. (10-d), where the subscripts e, m, p and r of 
the yield value cf  denote respectively, the elastic limit, 

medium, peak and residual values. The peak value cpf  

equals the masonry compressive strength cf  of the inter-
face.  

5.4. Numerical Simulations AT A Cell Level 

 This section provides an insight into the inelastic behav-
ior of a masonry REV in running bond texture and is consti-
tuted by common solid clay Italian bricks (dimensions 250 × 
125 × 55 mm). While the actual Siloteca texture is a triple 
head patter, here for the sake of simplicity we assume that 
the walls are constituted by three non-interconnected leafs. 
Obviously, this assumption is quite simplistic and a detailed 
survey of the actual interconnections along the thickness 
should be required. However, the assumption made, i.e. no 
interconnection between walls, allows to conclude that the 
simplified approach proposed provides, at least for out-of-
plane actions, lower bound estimations of the actual strength 
of the structure. 
 Elastic and inelastic material properties are summarized 
in Table I. Two different values of fracture energy GI are 
assumed. The first corresponding realistically to existing 
masonry (Case A), the second assuming an almost perfect 
plastic behavior in tension (Case B). The behavior in uniaxi-
al tension is depicted in Fig. (11-a) for horizontal and verti-
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cal tension. The anisotropy of the homogenized model is 
particularly evident and is mainly due to the contribution in 
horizontal tension of the bed joint, which fails in shear. In 
order to validate the results, the curves obtained using classic 
FE simulation [15] performed on a mesh with 384 elastic 
plane stress quadrilateral elements and mortar elasto-plastic 
interfaces are also represented, indicated as “FEM model”. 
As it is possible to notice, the agreement is almost perfect, 
even in the softening range. This is not surprising because 
fracture lines concentrate on joints reduced to interfaces, as 
demonstrated by the REV deformed shape depicted in Fig. 
(11-b), where normal stress-shear masonry interfaces dam-
age maps are also reported for the sake of completeness. A 
very similar behavior is experienced in horizontal bending, 
as can be noted by deformed shape and interfaces damage 
patch reported in Fig. (11-c). For compression loads, the 
anisotropy is less evident, due to the low shear strength of 
the joint when compared to the compressive strength. Hence, 
minor differences are expected when comparing the horizon-
tal and vertical compression. Compressive behavior is not 
reported for the sake of conciseness and because it is much 
less important in foundation settlement problems. The reader 
is referred to [3] for a discussion of this issue. 

5.5. Macro-Scale (Structural Level): A Simple Sequential 
Quadratic Programming –SQP– Approach 

 Under some general hypotheses holding for materials 
exhibiting an elasto-plastic behavior, as for instance that the 
plasticity condition is piecewise-linearized with r linearly 
elastic-plastic interacting planes in the space of superim-
posed stress and strain components, that the unloading of 
yielded stress-points does not occur and the continuum is 
discretized into finite elements, it has been shown in classic 
papers, e.g. [24], that the solution of an elasto-plastic prob-
lem can be achieved solving the following equivalent quad-
ratic programming: 
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where ED  is the assembled elastic stiffness matrix, Eε ( E
plε ) 

is the assembled elastic (plastic) part of the total strain vector 
E
tε , EN  is the shape functions matrix of the used finite el-

ement, Eλ  is the plastic multiplier vector, EH  is the harden-
ing matrix and Eσ  the assembled stress vector. 

 The FE model utilized next to analyze in the non-linear 
range masonry structures relies on a discretization through 
six noded wedge elements, assumed rigid and infinitely re-
sistant, and quadrilateral interfaces where all deformation 
occurs (linear and non-linear).  
 Each interface connects rigid elements representing the 
same homogenized materials. For each interface, three dis-
placement and two rotational non-linear springs are utilized, 
as schematically shown in Fig. (12). The third rotational 
spring, acting along an axis normal to the surface, is assumed 
rigid and infinitely resistant. To properly take into account 
some distinctive aspect of masonry behavior in flexion (de-
pendence of the flexural behavior by in-plane compression), 
but limiting to a great extent the number of optimization var-
iables involved in the QP scheme, the procedure envisaged 
in Fig. (12) is adopted for each interface. 
 For the sake of brevity, the focus is laid exclusively on 
bending moment acting on an interface k (a similar proce-
dure is adopted to handle torsion), at an iteration (i) of the 
loading process, bending rotation Φn

(i−1)  and normal dis-

placement of the interface centroid δn
(i−1)  of the previous 

iteration (i-1). the displacement field δn yt 2( ) is therefore 

Table I. Masonry Under Consideration. Mechanical Properties Adopted for Constituent Materials 

 Joint Brick-brick Interface   

E 700(*) 1600 [MPa] Young Modulus 

G 350(*) 800 [MPa] Shear Modulus 

c 1.4 ft 2 [MPa] Cohesion 

ft 0.2 - [MPa] Tensile strength 

Φ 25 45 [ ° ] Friction angle 

Y 45 - [ ° ] Angle of the linearized compressive cap 

Gf
I 

0.02 (Case A) 

0.2 (Case B) 
10 [N/mm] Mode I fracture energy 

Gf
II 

0.01 (Case A) 

0.1 (Case B) 
10 [N/mm] Mode II fracture energy 

(*) Interface stiffness is evaluated as E*(V1+V2)/(4A), with V1 and V2 being the volumes of the elements sharing the common interface under study and A 
being the interface area 
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immediately calculated along the interface thickness (abscis-
sa yt 2 ). For each interface, depending on its orientation with 
respect to the blocks disposition, the homogenized stress-
strain behavior is investigated from the meso-scale. At each 
assumed strain εn , an interface displacement at the macro-
scale is univocally associated simply by applying what is 
stated in [23]. In particular, given εn , the corresponding 
displacement in the discrete model on the interface k  be-
tween elements M  and N  is δn = 1 / 2 H M + H N( )εn , where 
all symbols have been already introduced. 

 For the interface k  the homogenized stress-displacement 
relationship is therefore known for each point of the inter-
face. By integration with a reasonable subdivision along the 
thickness into layers (authors experienced that the utilization 
of 10 layers represents a good compromise between numeri-
cal efficiency and accuracy) the compression load N(i−1)  on 
the interface at the (i-1)-th iteration is calculated. At a fixed 
value of membrane normal force, the non-linear relationship 
moment-curvature is investigated again from the meso-scale, 
along with its linear stepwise constant approximation (neces-
sary to use the sequential quadratic programming scheme 

 

 
Fig. (11). Masonry under consideration. -a: Uniaxial response of the homogenization model along horizontal and vertical tension for two 
values of fracture energy. -b: REV deformed shape at collapse for horizontal tension (mesh used and magnified view) with indication of 
interface damage in horizontal tension (center) and vertical tension (right). -c: same as previous, but for horizontal bending. 
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discussed in the sequel). Again it has been noticed that the 
passage between curvatures and rotations, necessary when a 
discrete representation at a structural level is adopted, is triv-
ial and is due to Kawai [23]. 
 In this way, bending moment and torsion may be evalu-
ated step by step during the deformation process simply by 
integration. 
 A database of moment-curvature diagrams at different 
levels of normal stresses is always at disposal from meso-
scale computations before any structural non-linear simula-
tion. When normal membrane force is within the range in-
spected but does not exactly match with the values investi-
gated, a linear interpolation law for the diagrams is used. In 
order to utilize sequentially the QP approach [11] an approx-
imation of the non-linear behavior through a linear piecewise 
constant function is used. 
 Following this procedure, the resultant mechanical model 
is thus composed of 5 elasto-plastic springs, Fig. (12). With-
in each iteration, an elastic-perfectly plastic approximation 
for each spring is utilized, signifying that 10 plastic multipli-
ers (two for each spring, λ+  and λ− , corresponding to posi-
tive or negative kinematic variables) for each interface are 
needed. In this way, optimization variables entering into the 
QP problem are relatively small (10 plastic multipliers for 
each interface, 3 displacements and 3 rotations for each ele-
ment).  

 Since each interface is modeled through elasto-plastic 
uni-dimensional springs independent from each other, it can 
be stated that H E  in equation (11) turns out to be diagonal.  
 Within the FE model adopted, problem (11) may be re-
written as: 
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 Assuming that the structural model has nin  interfaces and 
nel  elements, symbols in equation (12) have the following 
meaning: 

1. Kel  is a 6nel × 6nel  assembled matrix, collecting elastic 
stiffness of each interface. Local elastic stiffness matrix of 
each interface is obviously diagonal, whereas the global 

stiffness matrix Kel  is generally not diagonal. It is worth 
remembering that elastic stiffness values are evaluated at the 
meso-scale, as discussed in the previous section.  

2. +λ  and −λ  are two 10nin  vectors of plastic multipliers, 
collecting plastic multipliers of each non linear spring (e.g. 
flexion, shear, etc.). 

3. Kep  is a 10nin ×10nin  assembled matrix built from diag-
onal matrices of hardening moduli of the interfaces. 

4. Uel  is a 6nel  vector collecting the displacements and 
rotations of the elements. 

5. F  is a 6nel  vector of external loads (forces and mo-
ments) applied on element centroids. 

 Typically, the independent variable vector is represented 
by element displacements Uel  and plastic multiplier vectors 

+λ  and −λ .  
 As usually done in a non-linear structural analysis, QP 
problem (12) is solved in terms of displacement and plastic 
multipliers step increments. The initial trust independent 
variable vector is always represented by the solution at the 
previous step. 
 In the framework of the two-step approach proposed, the 
non-linear behavior of the springs is approximated using a 
linear-discontinuous piecewise constant function, as recom-
mended in [3]. The softening behavior is handled within a 
Sequential Quadratic Programming SQP scheme, already 
discussed in [2, 3], where the reader is referred for further 
details. 

6. NUMERICAL RESULTS AT A STRUCTURAL 
LEVEL 

 The numerical model previously described and already 
presented in [2, 3] without the presence of translational elas-
tic springs representing soil stiffness, has been here general-
ized in the presence of a Winkler model. 
 Before presenting results obtained with the FE approach 
proposed, here it is worth noting only that, in the model, the 
following hypotheses/simplifications have been made: 
• a homogenization approach is assumed for masonry, 

highlighting that a non-linear material exhibiting differ-

 
Fig. (12). Evaluation of the non linear load-displacement (or moment-rotation) behavior of the interfaces at each load step. 
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ent strength in tension and compression and along verti-
cal and horizontal direction is adopted. Mechanical 
properties of such material are derived fitting as close as 
possible experimental data available for the masonry 
under consideration, through homogenization theory. 
The inelastic behavior of masonry, see Fig. (11), realis-
tically reproduces the actual properties of the masonry 
material under consideration [1], also reflecting the ex-
pected orthotropy ratio for the texture considered and 
the actual disposition and geometry of the bricks (Italian 
bricks of dimension 250×120×55 mm). 

• To realistically reproduce the experimental crack pat-
tern, it is assumed that Winkler stiffness for the springs 
placed at the foundation level remains unchanged and 
that dead loads and self-weight are incremented step by 
step from a null initial value to their actual value at the 
last step. The non-linearity of the masonry material re-
sults into non-linearity of the global behavior of the 
structure, with consequent cracks formation on the mesh 
used. The resultant crack pattern found numerically 
should be compared with the existing degradation pat-
tern, in order to establish if the approximate procedure 
proposed in the previous Section adequately estimates 
the overturning of the façade. 

 At this stage, a FE discretization with 5056 wedge ele-
ments is used, as schematically shown in Fig. (13) on the 
deformed shape of the structure obtained at the end of the 
non-linear static analysis. A detail of the crack pattern is 
sketched in Fig. (14). Finally in Fig. (15) point A crack hori-
zontal opening vs vertical loads multiplier is represented.  
 Point A is positioned under the roof at a distance equal to 
around 10.50 m from the façade subjected to rocking. From 
numerical results obtained, the position of the vertical cracks 
in the central wall, the façade crack pattern and the opening 
of the crack under the roof seem in very good agreement 
with experimental evidences, meaning that the combined 
analytical numerical approach proposed may provide quite 
accurate predictions of the state of degradation of the build-
ing. In order to further assess numerical results obtained with 
the non-standard procedure proposed, in Fig. (15) an addi-
tional crack opening vs vertical load multiplier curve is ob-

tained with the commercial code Strand 7, assuming for ma-
sonry an isotropic elasto-plastic material obeying a Drucker-
Prager failure criterion (with tensile strength kept as the av-
erage of the vertical and horizontal tensile strength). Whilst 
this latter approach is only able to provide crude approxima-
tions of the actual masonry behavior in the inelastic range, it 
seems however the only alternative procedure available in 
common design to assess present numerical results. 

7. CONCLUSIONS 
 A combined analytical numerical model regarding the 
evaluation of the causes at the base of the state of degrada-
tion of an ancient masonry built aggregate has been present-
ed. The approach proposed is a two-step process. In the first 
phase, an equilibrated analytical model constituted by rigid 
elements subjected to overturning has been proposed. The 
model allows a reliable evaluation of the position of the 
cracks determining overturning of the façade and part of the 
perpendicular walls. By simple identification with data re-
garding the actual cracks opening, elastic stiffness of the soil 
is evaluated, to be used within a sophisticated FE approach 
accounting for damage in the masonry elements. The FE 
model so tuned provides quite accurate results in terms of 
both crack pattern and determination of crack opening. 

 
Fig. (13). Deformed shape obtained at end of the numerical simula-
tions. 

 
Fig. (14). Detail of interfaces where non linear deformation occurs. 
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