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Abstract: In this work the performances of the Discrete Element Method (DEM) applied to kinematic limit analyses of 
the out-of-plane behavior of masonry wall panels (with different textures) are investigated.  

A discrete model of masonry is proposed, which assumes that rigid blocks are connected by a mortar interface: this is ap-
propriate for historical masonry, where mortar is much more deformable than blocks and joints thickness is negligible. 
Therefore blocks can be modeled as rigid bodies connected by zero thickness Mohr-Coulomb-type interfaces.  

The applied method is known as FEM/DEM, which combines finite and discrete element models.  

A comparison with well-known and meaningful examples presented by Giuffrè has been carried out in order to validate 
this method for studying the behavior of masonry. For this purpose, 2D DEM models reproducing walls sections have 
been considered: they reproduce masonry walls with different staggered blocks, in particular stack bond and running bond 
patterns, subjected to lateral loads. 
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1. INTRODUCTION 

 Masonry is a heterogeneous material obtained by the 
regular repetition of blocks and mortar, which is laid 
between them. A wide set of models exists in the literature, 
which are apt to investigate masonry behavior. Hetero-
geneity and nonlinear behavior make modeling masonry a 
difficult task. 

 If attention is focused on the characteristic length of 
analysis, two scales may be pointed out: the micro-scale and 
the macro-scale. As it is well known, the field-problem 
formulation is strongly influenced by the characteristic 
length.  

 At the micro-scale level the characteristic length is 
represented by blocks. Attention is devoted to interactions 
between blocks through mortar joints that may be modeled 
as an interface or as a continuum material characterized by 
either a linear or a nonlinear response. Hence, the need of 
keeping at a reasonable size the complexity of the 
computational problem, allows only limited portions of a 
masonry structure  i.e. piers, spanned beam, lintels, etc.  
to be studied [1-7]. 

 At the macro-scale level the characteristic length is 
represented  by  macro-elements  like  masonry  panels. They 
could be modeled as simple equivalent systems, so that they  
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may be used to analyze more complex structures  i.e. 
walls, buildings, etc.  [8-16]. Alternatively, they could be 
treated as continuum models, usually obtained by 
homogenization techniques: the Cauchy continuum, the 
Cosserat continuum and higher order continua [17-19] are 
examples of this approach. At the macro-scale level there 
have been performed either linear analyses [20-22], or 
nonlinear analyses, which take into account damage 
phenomena [23,24] or even limit analyses [25-27]. 

 Here a discrete model to investigate masonry behavior is 
proposed. It is built on the assumption that rigid blocks are 
connected by mortar interfaces. This hypothesis is justified 
since, in the case of historical masonry, mortar is much more 
deformable than blocks and its thickness is often negligible 
when compared to block dimensions. Hence blocks can be 
modeled as rigid bodies connected through Mohr-Coulomb 
type interfaces (i.e. mortar thin joints). In other words, 
masonry is seen as a molecular skeleton where interactions 
between molecules (rigid blocks) are represented by forces 
and moments, which depend on their relative displacements 
and rotations [1, 28,29]. 

 In this work the feasibility of the Finite Element Method 
(FEM)/Discrete Element Method (DEM) [30] in dealing 
with the behavior of masonry structures is investigated. The 
DEM provides a consistent procedure to study masonry 
structures because of its ability to cope with separated 
blocks. In particular, these models can properly represent the 
behavior of historical masonry constructions, which could be 
considered as made of dry stone blocks exhibiting a periodic 
pattern. 
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 The combination of DEM and FEM allows to study both 
the linear and the nonlinear masonry behavior. In the 
proposed model blocks can be assumed to behave either as 
rigid or as elastic bodies while mortar joints are idealized as 
zero-thickness Mohr-Coulomb type interfaces. Blocks are 
modeled by finite elements while interfaces are modeled as 
discrete elements.  

 

Fig. (1). Running bond (a) and stack bond (b) patterns. 

 In the literature there are available already discrete 
models for masonry in the linear elastic range [20] and 
continuous models for limit analysis [27]. 

 The target of this research is to compare the obtained 
results with more reliable models. In order to apply the 
FEM/DEM, which is generally used for geomechanics 
applications, a preliminary validation of the model with 
reference to masonry behavior is needed. Analyses are 
performed by using Y2D, an open source code developed by 
prof. A. Munjiza [30, 31], who has been among the pioneers 
of FEM/DEM coupling. A comparison with well known and 
meaningful examples has been carried out to validate this 
method. For this reason several models reproducing the 
studies carried out by Giuffrè about the out-of-plane 
behavior of masonry walls [32] have been analyzed. 2D 
discrete elements representing both walls sections and panels 
have been considered; they reproduce masonry walls with 
different staggered blocks: some of them do respect criteria 
of good construction i.e. Giuffrè's regola d'arte and some of 
them don't. In particular stack bond and running bond 
patterns have been taken into account; the latter (which 
satisfies regola d'arte) shows a monolithic behavior, while 
the stack bond pattern behaves like two separated layers. 

 Comparison between FEM/DEM models and the 
simplified Giuffrè's models allows to assess the feasibility of 
the proposed method to real-world examples. A subsequent 
research step will consist in improving the Y2D-code to 
make it more suitable for the analysis of masonry behavior. 
This can be accomplished by implementing a specific 
constitutive law for masonry-like materials. 

2. MASONRY MODEL 

 The idea is that of investigating the out-of-plane behavior 
of masonry. A simple model is proposed where thickness of 
masonry, under in plane strain assumption, is analyzed. 
Masonry panel section may be considered as a periodic 
structure. Indeed the masonry panel section may be obtained 
by regular repetition  according to an internal law  of an 
elementary cell. In particular two texture are considered (see 

Fig. 1): running bond and stack bond. The masonry out of 
plane behavior is very sensitive to different staggered tiers.  

2.1. Discrete Model 

 Let  be the position of the center of the generic  

block in the Euclidean space:  

j,iy jiB ,

.ja
4

b
i= 21

j,i eey   (1) 

 As it is shown in Fig. (2), where representative volume 
elements of both textures are presented,  can actually take 
arbitrary values while i is such that the sum j

j

i   is always an 
even number.  

 Due to the regularity of the masonry structure, the  

block interacts with the  block by means of  

joints Fig. (3). 

j,iB

j,i

2k,1k2kj,1kiB  

 

Fig. (2). Representative volume elements of the running bond (a) and of the stack bond pattern (b) 
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Fig. (3). Interfaces between blocks in the running bond (a) and in the stack bond pattern (b) 

 
Fig. (4). Collapse mechanisms of walls cross sections for different textures, taken from Giuffrè[32]. 

 If the mortar joint is modeled as an interface  such a 
problem has been studied by Klarbring [33] using 
perturbative techniques in the elastic case  the deformation 
between two blocks may be written as a function of the 
displacement jump. 

The displacement of each block is a rigid body motion:  

  j,i
j,ij,ij,i B,=  yyyΩuu  (2) 

where  is a translation vector and  is an 
infinitesimal rotation vector of .  
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 In the 2D case, which is the only one which is considered 
here, the components of the displacement vector are written 
in a compact form as: . T

321 )Ω,u,(u=u

 Since blocks are rigid, we assume as a measure of 

deformation the jump  at the interface  

between blocks  and . This jump is obtained 

from the following expression:  
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 It has been shown in Cecchi and Sab [20] that  and  
can be expressed in terms of the infinitesimal strain 

iu iΩ

   ,,2
1 uu=E , and of 3 yet undetermined rigid body 

displacement parameters, (2 translations and 1 rotation); the 
jump of the displacement field at the interface depends only 
on , and on the undetermined rotation, . E 3

 When the response is elastic, the constitutive tensor K  

between the t  tractions at the  interface and the   

jump of the displacement field at the  interface is 

given, component-wise by:  

2,1 kk u
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 Here e is the thickness of the real joint,  is the mortar 
constitutive functions and n  is the normal to the interface. In 
the isotropic case, the above expression becomes:  
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where EM is the Young modulus of mortar, vM its Poisson 
ratio and  is the identity tensor. Note that tensor K has, in 
this case, a diagonal form. 

I

 At collapse, the  tractions at the  interface obey 

the Mohr-Coulomb yield criterion. The cohesionless Mohr-

Coulomb criterion at a point of  interface is:  

t
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where  is the normal to  interface,  is the 

normal component of , and  is the orthogonal component 
of . The Mohr-Coulomb support function (see [34] is:  

n
2,1 kk

t

nt =tn

t

t

 
     

































otherwise

tan    if
tan

c

ab

1

=grad
2k,1k

s

ununu

u

 (7) 

where,  is the velocity jump across the joint interface 

,  is the normal to the  interface, 

 is the orthogonal component of , 
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is the cohesion parameter and 
2
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  is the friction angle; 

 is the height and b  is the width of the block. a

 It must be noticed that  is a piecewise-linear field on 

 which can be expressed as a function of the strain 

tensor , and of the infinitesimal rotation, . 

 u
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 Two masonry pattern are studied: the running bond and 
the stack bond cases. In particular it should be observed that  

 • if , then  is always an horizontal interface;  1=k,k 21 
2k,1k

 • if  and , then  is a vertical interface in 

the case of the running bond;  
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 • if  and , then  is a vertical interface in 

the case of the stack bond.  
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 The interfaces of the  block are defined as follows.  j,iB
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 • only for the stack bond there is an additional vertical 
interface:  
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3. MASONRY ANALYSIS: SOME MEANINGFUL 
CASES 

 The idea is that of reproducing some experiments 
performed by Giuffrè to evaluate the effect of texture in the 
out-of-plane masonry behavior Fig. (4). 

 The first step consists of analyzing monolithic blocks. A 
monolithic block subject to a lateral force acting at its upper 
edge has two possibilities of collapse: sliding or overturning, 
depending on its thickness-to-height ratio. 

 The second step involves the analysis of masonry made 
of superimposed blocks. When sliding is concerned, a lateral 
force acting on the upper block produces sliding of that 
block only. But when the thickness of the wall is larger than 
a single block and overturning is considered the efficiency of 
diatoni (i.e. stiffening blocks with their longest edge lying 
parallel to horizontal forces) is accounted for. 

 Hence four representative cases are reported here: 
monolithic wall (Fig. 5a), two layers monolithic wall without 
connecting diatoni (Fig. 5b), running bond wall (Fig. 5c) and 
stack bond wall (Fig. 5d). In the running bond pattern the 
presence of stiffening diatoni might be noticed. For each of 
the considered cases the two failure mechanism of sliding or 
overturning may occur.  

4. NUMERICAL TESTS 

4.1. The FEM-DEM Model 

 The most widely used method in computational solid 
mechanics is the Finite Element Method. In recent decades a 
set of computational methods has been developed to deal 
with particulates, jointed rock, granular flows and problems 
where the so called emergent properties of a system are a 
result of interaction between a large number of individual 
solid particles. The most widely used method for a large 
class of these problems is the Discrete Element Method. In 
the early 1990s the two methods have been combined and 
the resulting method is now known as the combined FEM-
DEM [30]. It is in essence a discrete element method with 
individual elements meshed into finite elements. Finite 
elements allow to model elastic deformation (if any), while 
discrete element algorithms allow to deal with interaction, 
fracture and fragmentation processes. 
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Fig. (5). Monolithic wall (a); Two layers wall without diatoni (b); Running bond wall (c); Stack bond wall (d). 

Table 1. Mechanical Properties of Joints 

Joint  Friction  Cohesion [MPa]  Tensile Strength [MPa]  Fracture Energy [N/m]  

Inside bricks   0.5    1000.    100.    1000.   

Horizontal mortar   0.5     6101     6101     0.1

Vertical mortar      0.1    6101     6101     0.1

4.2. Analyses Details 

 Analyses have been carried out by using Y2D, an open 
source FEM/DEM code [31]. Models represent a vertical 
section of different masonry walls exhibiting various H/B=  
ratios, B  being the wall thickness and H  t e wall height, and 
different textures. Meshes are made of 3-nodes 2D elements 
with a characteristic lenght of 0.06 m. Each blocks is 
discretized by 8 elements, in order to have different bond 
patterns, and two layers of bricks are grouped into one. The 
number of the elements in the models varies from 64 to 256. 
The number of timestep of the analysis is 10000. The wall 
thickness  has been always kept equal to 0.48 m, while the 

 ratio varies in the range , depending on the number 
of horizontal joints. 

h

B

 40.4 

4.3. Material Properties 

 Mechanical characteristics of materials are the following: 
Young’s modulus of block Eb = 1000 MPa, Young’s 
modulus of mortar  = 1×10-6 MPa, Poisson’s ratio of 
block and mortar  = 0, hence hypothesis of 
transversally incompressible material is assumed. It may be 
noticed that the ratio between Young’s modulus of block, Eb 
and mortar,  is , hence block may be considered as 
infinitely rigid with reference to the joints. Density of block 

is  1800 kg/m . 

ME
B =

910

M

ME

=B
3

4.4. Joints Characterization 

 Three different joints have been used. The strongest joint 
has been adopted inside bricks. This is justified because 
bricks are modeled as rigid blocks with infinite compressive 
strength. For mortar joints, Eq. (6) is used with ; hence 
a frictional only Mohr-Coulomb joint has been considered. 
However different joint properties have been used for 

horizontal and for vertical mortar joints, the former being 
stronger than the latter.  

0=c

 Indeed, horizontal joints strength is influenced by friction 
depending on the weight of that part of the wall lying above 
it, while vertical joints strength depends only on the 
horizontal force. In this way, the circumstance that mortar 
can be very weak or even absent, as in the case of some 
historical masonry, is implicitly taken into account by 
considering the joint as an interface instead than taking into 
account its elastic properties. Synthetically, results presented 
here correspond to the case of dry stone masonry. 
Mechanical properties of joints are summarized in Table 1. 

4.5. Mechanism Depending on   Ratio 

 A  horizontal force and a  vertical force have been 
applied to the models. The model height and the intensity of 
horizontal force vary in order to investigate the out-of-plane 
behavior of masonry walls, reproducing the experiments 
carried out by Giuffrè [32]. The two forces are however 
related because  depends on , which represents the 
weight of the wall and therefore depends on its height. The 
horizontal force can produce, as already mentioned, two 
different mechanisms: sliding or overturning.  

1F 2

2F

F

1F

 By elementary statics, the horizontal force that provides 
sliding is:  

,  (8) tanF=F 2
s
1 

 while the horizontal force that produces an overturning 
mechanisms is:  

/2, F=F 2
o
1   (9) 

where H/B=  is the dimensionless thickness to height ratio. 
For masonry, the value of friction parameter tan  varies 
approximately between 0.4 to 0.6; for this reason an average 
value of tan  =0.5 has been adopted here. 
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 When  sliding is the collapse mechanism; 

otherwise, when , collapse is due to overturning. By 

comparing  and  it is possible to observe that there is a 

limit value of the ratio 

o
1

s
1 F<F

s
1F

s
1F

o
1F>

o
1F

  which identifies the transition from 

sliding to overturning:  

2tanφt=lim  (10) 

 Models with different values of   have been tested and 

each one has been subjected to the minimum horizontal force 
between  and . In all cases, see Fig. (6), the expected 

collapse mechanism was recovered. The numerical tests for 

s
1F

o
1F

0.5=tan  show that the limit value  corresponds to o
1

s
1 F=F

1= . 

4.6. Sliding 

 The sliding mechanism fully agrees with Eq. (8). It is 
clear that, since vertical loads coincide with the self-weight 
of blocks, global sliding occurs in the cases of monolithic or 
two layers walls. Instead in the cases of stack and running 
bond walls sliding phenomena start from the top layer and 
subsequently extend to the lower ones, as shown in Fig. (7). 
Moreover, the horizontal displacements of the stack bond 

Fig. (6). Dimensionless collapse mechanisms as a function of the horizontal to vertical force ratio. Overturning and sliding regions are 
outlined. 

 
Fig. (7). Sliding displacements for the analyzed wall patterns. 
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pattern are larger, if compared to the running bond: this can 
be explained because the vertical load, which is responsible 
of friction, depends in the former case only on a single block 
(and not on two) and is, therefore, just one half of that 
occurring in the latter case.  

 

Fig. (9). Overturning mechanism for the two layers (a) and the 
stack bond (b) walls. 

4.7. Overturning 

 For overturning the stagger of running bond pattern 
provides a monolithic behavior; for the stack bond, instead, 
the lack of such a device does not allow the occurrence of 
monolithic behavior and the two vertical curtains behave as 
being independent. 

 As a consequence, there is a similarity of response 
between the monolithic and the running bond wall, on one 
side (see Fig. 8); and between the two layers wall and the 
stack bond wall on the other one (see Fig. 9).  

 Other, more complex patterns, like those presented in 
Giuffrè [32] would exhibit an intermediate behavior between 
those shown here. 

5. CONCLUSIONS 

 All tested cases appear to be in good agreement with 
Giuffrè's results. As a conclusion, this study shows that 
applications of FEM/DEM to out-of-plane analysis of 
masonry walls are feasible and provide reliable results. The 
next step of this work will involve analyzing with 
FEM/DEM other types of patterns especially those with 
internal incoherent filling. The following conclusions can be 
drawn:  

1) A masonry correctly built must be characterized by 
horizontal lines and regular transversal connections. 

 

Fig. (8). Overturning mechanism for the monolithic (a) and the 
running bond (b) walls. 

2) The lack of transversal connections makes masonry unfit 
to resist to rocking motions. 

3) The strength of wall against out-of-plane forces strongly 
depends on the arrangement of blocks. 

4) A regular arrangement of blocks, as in the so called 
regola d'arte, produces a behavior similar to that of a 
monolithic body. A less effective texture provides a 
decrease of mechanical performances. 

5) The Mohr-Coulomb model is appropriate to represents 
load transmission between blocks. Blocks interlocking 
produces, through friction, a pseudo-tensile resistance, 
which is a function of the compressive stresses acting on 
the sliding surface. 

6) DEM models are particularly appropriate to describe the 
behavior of brickworks with different textures and 
especially those idealized as dry block masonries. 
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