
8 The Open Civil Engineering Journal, 2012, 6, 8-14  

 

 1874-1495/12 2012 Bentham Open 

Open Access 

Optimization of Grillage-like Continuum by Triangle Plate Element 

Kemin Zhou* and Xia Li 

College of Civil Engineering, Huaqiao University, Fujian, 361021, China 

Abstract: The volume of grillages with stress constraints is minimized. An optimal beams system or plate with reinforced 

ribs is obtained to present the optimal structure. A grillage-like continuum material model is adapted. Structure is 

analyzed by finite element method with triangle plate elements. The geometric matrix of triangle plate element in explicit 

formulation about area coordinates is presented. The stiffness matrix of grillage-like continuum material model is derived. 

The material distribution field in design domain is optimized by fully-stressed criterion. The densities and orientations of 

the beam or reinforced ribs at nodes in grillages are taken as design variables. The densities and orientations vary in 

design domain continuously. The optimal distribution fields of bend moments, flexure displacement and material are 

obtained simultaneously. Subsequently the discrete structures are founded based on the optimal material distribution 

fields. The performances of different elements are compared. The optimization procedure is accomplished by computer 

program automatically. 
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1. INTRODUCTION 

 The grillage is kind of particular plane structure, which 

bear loads in landscape orientation of structure plane. It is 

constructed by an infinite number of rectangular cross 

sectional beams with infinitesimal spacing. Beam widths 

vary and their depths are given. The least-weight grillages, 

which are anisotropic continua, are named as “grillage- 

like continua” frequently. The optimization of least-weight 

grillage is a fundamental topology optimization problem. 

Many analytical solutions were derived by different methods 

[1-11]. The further reviews on the least-weight grillages 

were given by Rozvany and Prager, [12] Rozvany et al., 

[13]. As we known, it is difficult to get the exact analytical 

solution on grillages. It is therefore meaningful to study the 

method to derive optimal topologies numerically. 

 Usually people, by various numerical topology 

optimization methods, intend to obtain discrete solutions  

like perforated plates, rather than a continuous material 

distribution field. However the grillages are generally 

continuum structures. To obtain continuous material 

distribution field of truss-like continuum structures, Zhou 

and Li [14] developed a novel numerical method basing on 

finite element method. This method is further generalized to 

the topology optimization analysis of grillages by rectangle 

elements [15]. In this paper, triangle elements are used to 

adapt irregular design domain. We derived the elastic matrix 

and stiffness matrix of triangle elements of grillages-like 

continuum material model. 
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 In fact if there is thin plate in middle plan of grillage, the 

optimal grillage turn to become the optimal solid plates 

reinforced rib. Furthermore, the optimal grillage with stress 

constraint is also optimal structure with a compliance 

constraint or a natural frequency constraint. 

2. GRILLAGE-LIKE CONTINUUM MATERIAL 

MODEL 

 It is assumed that the grillages-like continuum is 

isotropic and its Poisson’s ratio is zero. Therefore the 

relationship between stress and strain under the local 

coordinate system can be expressed as, 

  
= E diag[ 1 1 1/ 2 ] ,          (1) 

where E is Young’s modulus.  and  are the stress and 

strain vectors, 
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 The strain vector  is related to the curvature vector  

of mid-plane as, 
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 In this paper t1, t2 are named as densities and they 

combining orientation of beams at nodes are taken as 

optimum design variables. 
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 In the final optimum grillage-like continua, all beams are 

aligned along the directions of principal moments and thus 

no torsion deformation and related torsion moment exists in 

beams. Consequently the width corresponding to torsion has 

no effect on the final results. However it should be noted that 

without torsion stiffness the balance state is unstable which 

will cause the stiffness matrix become singular. To resolve 

this issue the densities corresponding to torsion is assumed 

as 
  
(t

1
+ t

2
) / 2 . At the first iteration 

  
t
1

= t
2
 is assumed, which 

guarantees that optimization begins from an isotropic 

structure. With the aids of (1) and (4), the moments in the 

region of 
  
dy = 1and   dx = 1  can be calculated by integrating 

the stresses on the cross section, 
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where
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2
,0) is stiffness matrix on material principal 

axes, 
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Global of Moment-Curvature Relationship 

 The curvatures of mid-plane and the moments on the 

global coordinate axes are denoted as, 
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respectively. Through coordinate transformation the local 

terms and their global counterparts are related as, 
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where
 
T ,

 
T is the frame rotation matrix for strain and stress, 

respectively,  

Combining (6), (9) and (10) yields, 
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3. FINITE ELEMENT METHOD 

Displacement Pattern 

 Three nodes triangle elements are used in this paper. The 

displacement is expressed as, 
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where 
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 are nodal displacement and rotations, 

respectively; their coefficients shape function have following 

formula, 
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where Li is area coordinates of any point in element and xi, yi 

the coordinates of nodes. 
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Strains 

 Strains can be calculate by geometric matrix B and nodal 

displacements vector, 

  
= BU

e
,          (18) 

 Shape function (17) is the cubed function of Li and not all 

of them are zeros, therefore geometric matrix B is linear 

function of Li and can be written as, 
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 In this section, we give a very simple formula of 

geometric matrix with explicit Li. In this form, it is easy to 

integral in following derivation. The strains on the surface of 

the plate at the nodes are given by (18) when Li=1, z=h/2, 
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 Nodal strains are obtained by average strain of elements 

around the nodes. 
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where Sj is the set of elements around node j, nj is the 

number of elements around node j. 

Elastic Matrix and Stresses 

 If the densities and orientation of beams at node j are 

denoted as 
  
t
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node j is expressed as 
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 The elastic matrix at any point in an element can be 

obtained through standard element interpolation by shape 

functions, 

   

D
e
(L

1
, L

2
) = L

i
D

j
i

i=1

3

,         (28) 

where ji is the nodes belong element e. Further the stress at 

node j is calculated by, 

  j
= D
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.          (29) 

Element Stiffness Matrix of Grillages-Like Continuum at 

any Point 

 With the aids of (28) the element stiffness matrix is 

calculated by, 
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Material Volume 

 The material volume is taken as the objective function 

  

V = ht d A
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e
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          (32) 

where h and t are thickness and density of beam, 

respectively. For convenience the dimensionless volume is 

defined as, 
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where F and q the magnitude of point load and concentration 

of uniformly distributed load, respectively. When triangle 

elements are used, the volume is calculated by, 
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4. PROCEDURE TO OPTIMIZE DISTRIBUTION OF 

BEAM 

 Based upon the above development, the following 

procedure is proposed to optimize the beam distribution. 

(i)  Design domain is divided by triangle finite elements and 

the initial values of design variables are assumed as, 

  
t

bj

0
= 1 , 

  j

0
= 0 , b=1,2; j=1,2,…,J;        (35) 

(ii)  Finite elements analysis is performed and the principal 

stresses and their corresponding directions at nodes are 

calculated; 

(iii) Beams are oriented along the principal stress directions. 

The beams densities are adjusted on the fully-stressed 

criterion, 
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where the superscript i is the index of iteration, 
 p

 

permissible stress. To prevent the stiffness singularity, too 

little densities should be avoided by, 
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where the tolerance r1=10
-7

 is adopted in this work. 
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(iv) The convergence is checked by comparing the maximum 

relative densities changes of two successive iterations, 

  

i
= max

b, j
t

bj

i+1 t
bj

i / max
b, j

(t
bj

i+1) < r
2

,        (39) 

where r2 is a specified tolerance value and r2=10
-2

 is used 

her.  

 Iteration is terminated if (39) is satisfied, otherwise return 

to (ii). 

 After the optimal material fields are determined the 

optimal discrete beams system can be constructed. 

5. NUMERICAL EXAMPLES 

 The mechanics models of three examples are shown in 

Fig. (1). The main parameters are given in Table 1. 3-nodes 

triangle plate elements are used. The L L square domain  

is shown in example 1. All four boundaries are simple 

supported. A point load acted at center. Due to its symmetry 

a quarter of the structure is analyzed and illustrated in 

following. In example 2, a quarter of round plate is loaded 

by uniformed distributed force. Its two straight boundaries 

are simple supported and the quarter of circle is free. Its  

two right angle boundaries are simple supported and  

the circumference boundary is free. In example 3, a half 

round plate is loaded by uniformed distributed force. Its  

half circumference boundaries are simple supported and  

its straight boundary is free. The finite element division 

patterns are showed in Fig (2). To compare the method  

with different elements patterns, two kinds of element 

patterns are adopted in example 1. The topology optimal 

structure is independence of magnitude of the magnitudes  

 

Fig. (1). Mechanics models. (a) Example 1, (b) Example 2, (c) Example 3. 

 

Table 1. Parameter of Examples 

 Example 1   

Elements Pattern a Pattern b Rectangular Example 2 Example 3 

Number of elements 512 1024 256 104 104 

Number of nodes 289 545 289 67 67 

Number of iteration 11 15 46 17 23 

Stress error% 10.3 4.56 2.56 3.78 3.54 

Dimensionless Volume 0.74977 0.75000 0.75279 0.74516 1.17793 

Exact Volume 0.75 - - 

 

Fig. (2). Finite Elements. (a) Two patterns of elements in example 1, (b) Example 2 and Example 3. 

(a) (b)
Pattern a  Pattern b 
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of loads and sizes; therefore their concrete values are not 

given here. 

 The optimum moment and material distributions are 

showed in Fig (3). The ellipses represent the moments with 

same signs in all directions; the crosses denote the moments 

with different signs in two orthotropic directions. The 

lengths and directions of two principal axes of ellipses (or 

cross lines) stand for the magnitudes and directions of 

principal moments. Based on the moment distribution field, a 

discrete beam system is constructed as showed in Fig. (4). It 

should be noted that equivalent discrete structures are not 

unique. The whole procedures, including all figures, are 

achieved by program automatically. The iteration histories of 

volume of structures are shown in Fig. (5). To compare the 

 

Fig. (3). Optimal beams distributed fields. (a) Example 1 ,a quarter of the structure is analyzed for symmetry; (b) Example 2, (c) Example 3 

the half structure is analyzed for symmetry. 

 

Fig. (4). Suggested optimal beams systems. (a) Example 1, (b) Example 2, (c) Example 3. 

(a) (b)

(c) 

(a) (b)

(c)
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optimization processes with different elements, the result of 

rectangular element is shown here. It is shown that the 

material volume optimized by triangular elements is less 

than that by rectangular elements [15]. In iteration process, 

stresses tend to be fully stressed. Their relative errors to fully 

stress are shown in Fig. (6). The relative errors of triangular 

elements are less than that of rectangular elements. Of 

course, the freedom of triangular elements in pattern 2 is 

great than that of rectangular elements. Additionally, for the 

stiffness of triangular elements being higher than that of 

rectangular elements, the material volume of triangular 

elements is less, as shown in Table 1. The exact analytical 

solutions of example 1 are showed in Fig. (7a), which give 

the optimized distribution of members. For example, the 

simple supported beam shown in Fig. (7b) is one of 

optimized structures. 

Fig. (5). Convergence process of material volume. 

Fig. (6). Convergence process of stress error. 

Fig. (7). Exact solution of example 1 (a) optimized distribution of member; (b) One of optimization structure. 
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 Exact solution of example 1 was given by Rozvany [2] and 

Morley [4], and is shown in Fig. (6). In the central region 

marked by beams along any orientation are optimal. In 

other region optimal beams are lay along the arrowhead. The 

sign "+" and "-" means the moments of beams. 

CONCLUSIONS 

 A numerical method based on triangular elements for the 

topology optimization of least-weight grillages was proposed. 

In contrast to most numerical method which directly leads to 

discrete structure, a material distribution field is firstly 

obtained which subsequently serves the basis to construct the 

discrete structures. A very simple geometry matrix of 

triangle element is given. The optimized results based  

on triangular elements are better than that on rectangular 

elements. The stiffness matrix of truss-like continuum in 

triangle element is derived. This method is robust and can 

handle arbitrary loading and boundary conditions and shape. 
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