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Abstract: The effect of prebuckling in-plane deformations on the elastic flexural-torsional buckling of arches is studied in 
this paper. Nonlinear strain-displacement relations considering initial curvature effects and higher order prebuckling de-
formation terms with curvature in deriving process are substituted into the second variation of the total potential to obtain 
the buckling energy equation. The analytical solutions for the flexural-torsional buckling moment of arches in uniform 
bending, containing the effects of the prebuckling deformation, are proposed. Also, the influence of the higher order 
prebuckling deformation terms with the curvature effects is investigated according to the ratio of the minor axis flexural 
stiffness to the major axis flexural stiffness.  
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1. INTRODUCTION 

 In the classical analysis for the elastic flexural-torsional 
buckling of beams, it is assumed that the prebuckling in-
plane deformations are small enough to be neglected on the 
buckling load. This assumption is suitable only when the 
ratio of the minor axis flexural stiffness to the major axis 
flexural stiffness is very small. When the ratio of the minor 
axis flexural stiffness to the major axis flexural stiffness is 
not small, prebuckling in-plane deformations are known to 
increase the elastic buckling resistance of straight beams, 
because prebuckling deformations transform the straight 
beam into an arch. Previous theoretical investigations of the 
effects of the prebuckling in-plane deformations on the buck-
ling moments of straight member have been studied by a 
number of researchers; Trahair and Woolcock [1], Roberts 
and Azizian [2], Pi and Trahair [3,4] and others. 

 The classical solution for the elastic buckling load of 
thin-walled circular arches has been studied by a number of 
researchers; Vlasov [5], Yoo [6], Papangelis and Trahair [7], 
Kang and Yoo [8], Pi and Bradford [9, 10], Lim and Kang 
[11], Bradford and Pi [12], Yang et al. [13] and others. The 
influence of prebuckling in-plane deformations on the elastic 
flexural-torsional buckling of arches in uniform bending was  
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studied by Vacharajittiphan and Trahair [14], Yoo and Pfeif-
fer [15], and Pi et al. [16], and it was found that the prebuck-
ling deformations increase the elastic flexural-torsional 
buckling resistance of simply supported arches. Pi and Brad-
ford [17] presented closed form solutions for the elastic flex-
ural-torsional buckling resistance of laterally fixed arches 
with a doubly symmetric section and investigated the effects 
of the prebuckling in-plane deformations. Pi and Bradford 
[18] investigated the prebuckling response of the classical 
analysis and its effects on determining the out-of-plane and 
in-plane elastic buckling loads of circular arches with a dou-
bly symmetric section subjected to the uniform radial load. 
Some of the discrepancies between these researches are be-
lieved to be due to inappropriate interpretations of funda-
mental assumptions and to use of different degree of ap-
proximation of the curvature effects and prebuckling defor-
mation effects in the derivation. 

 In this paper, buckling energy equation including the 
effect of the initial curvature and prebuckling deformation is 
proposed for monosymmteric circular arches. The analytical 
solutions for the flexural-torsional buckling load of laterally 
simply supported circular arches in uniform bending, con-
taining the effects of the prebuckling deformation, are ob-
tained and the results are compared with the previous theo-
retical solutions. Also, the influence of the higher order 
prebuckling deformation terms with the curvature effects is 
investigated according to the ratio of the minor axis flexural 
stiffness to the major axis flexural stiffness. 
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2. STRAINS AND DISPLACEMENTS 

 The basic assumptions made in this study are as follows:  

(i)  The cross sections retain their original shape. 

(ii)  The shear strains due to change of normal stresses, 
such as bending and warping normal stresses, are negligibly 
small. 

(iii) The length of the beam is much larger than any 
other dimensions of the cross section. 

(iv) The shear strains along the middle surface of the 
thin-walled cross section are negligibly small. 

(v)  The normal strain due to bending is linearly distrib-
uted in a cross section. 

 
Fig. (1). Curvilinear coordinate system of arches. 

 
 Fig. (1) shows the curvilinear coordinate system of a cir-
cular arch that has an initial curvature in the direction of the 
minor principal axis oy of the cross-section. The longitudinal 
normal strain  in the system (x, y, z) shown in Fig. (1) can 
be written as follows (Usami and Koh [19]; Kang and Yoo 
[8]; Lim and Kang [11]): 
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where u, v, and w are the components of the displacement in 
the x, y, and z directions, respectively. Note that the normal 
strain  varies nonlinearly with y as a result of 
the  yRR   term. For the case of a curved beam subjected 

to bending, the normal strain distribution is shown in Fig. 
(2). 

 This strain variation is considerably different from that of 
a straight beam. The strain is definitely nonlinear; in fact, it 
is hyperbolic in the y direction. This is due to the initial cur-
vature of the beam. In the curved beam formula proposed by 
Oden [4], the nonlinearity of the strain is due to the quan-
tity  yRR   . For example, machine parts, hooks, chain 

links, and gears may have h/R ratios of near unity or larger, 
and their normal strain distribution must be evaluated with 
the nonlinearity. However, if the value of h/R is small in 

comparison with unity, the strain distribution is essentially a 
linear function of y (Oden [20]).  

 

Fig. (2). Normal strain distribution in a cross section of curved 
beam. 

 Utilizing the result by Oden [20] and the real structural 
condition of an arch where the value of h/R is small, the 
variation of  with y is assumed to be linear with ignoring 
the  yRR   term. With this assumption, the normal strain 

in Eq. (1) can be approximated as 
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 The shear strain due to bending and warping of the thin-
walled section are neglected. The shear strain due to uniform 
torsion is approximated by 

kn2  (3) 

where n is the distance from the mid-thickness surface and k 
is the twist. 

 The displacement components are functions of the coor-
dinates, x, y, and z. Using the approaches of Usami and Koh 
[19], the displacement at any point can be written in terms of 
shear center as 
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where uo and vo are a displacement of the shear center in the 
principal centroidal coordinate system (x, y);  is a rotation 
of a cross section about the z-axis; wc is the longitudinal dis-
placement of a cross section, which is the same for all points 
on a cross section, and is referred to as the average longitu-
dinal displacement; yo is coordinate of the shear center;  is 
the normalized warping function according to the principal 
sectorial coordinate system. 

 Substituting the displacements given in Eqs. (4a) ~ (4c) 
into Eqs. (2) and (3), the nonlinear longitudinal normal strain 
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and shear strain at a point on the cross section are obtained 
as follows: 
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3. BUCKLING ENERGY EQUATIONS 

 The following assumptions are adopted in this paper to 
obtain energy equation on the flexural-torsional buckling of 
arches considering prebuckling deformations. 

(a) The last buckled positions on the flexural-torsional buck-
ling consist of prebucked displacements and buckled dis-
placements as follow; 

obopo uuu  ; ; ; obopo vvv  cbcpc www  bp    

in which, “ ” and “ ” denote the bucking behavior and 
prebuckling behavior, respectively. 

b p

(b) Prior to flexural-torsional buckling, there are no out-of-
plane displacements. 

(c) Prior to flexural-torsional buckling, prebuckling strains 
are very small. 

(d) In-plane displacements and stress resultants are constant 
during the flexural-torsional buckling. 

(e) The axis of the arch is inextensible during the flexural-
torsional buckling. 

3.1. Prebuckling Stresses and Stress Resultants 

 Prior to buckling, the displacements from assumption (a) 
and (b) are given by ; 0ou 0 ; ; . 

Also, from assumption (c), prebuckling strains due to 
prebuckling displacements can be used as linear function. 
Applying these conditions into strain-displacement relations 

of Eq. (5), prebuckling strains (

opo vv  cpc ww 

,p p  ), stresses ( ,p p  ) 

and stress resultants ( ) are then approximated by ,zF M x
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where Rvww opcpcp / , Rwvopv cpop /  , A  is the 

area of the cross section and  is the moment of inertia 

about the major axis ox. 
xI

3.2 Variations of strains 

 As a result of assumptions (a), (b), and (d), buckling be-
havior of arches can be defined from the prebuckled position 
 0,,,0  pcpopop wvu   to the buckled posi-

tion  bcbobob wvu ,0,0,  . Also, the variation of prebuck-

ling displacements is equal to zero from assumption (d), and 
0/  Rvww opcpcp  due to inextensible condition of as-

sumption (e). 

 By considering the above conditions, the first and second 
variations of strains are obtained as 
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in which the higher order terms of prebuckling curvature and 

rotation containing opopopop vvvv  ,, 22  are neglected. 

3.3. Energy Equation 

 Under the external moment ex , the principle of station-
ary potential energy can be represented by the following 
equation; 
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where  represents the first variation; V and L denote the 
volume of the arch and the developed length of the arch, 
respectively;  and  denote the longitudinal normal stress 
and shear stress, respectively. The critical state of equilib-
rium is that the second variation of the total potential energy, 

 is equal to zero, which indicates a possible transition 
from a stable state to an unstable state. This energetic crite-
rion of the buckling state can be written as 
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 Substituting Eqs. (12), (13), (14) and (15) into Eq. (17), 
the energy equation then becomes  
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Fig. (3). Arches in uniform bending. 

in which z  is the axial force; F
xM  is the moment about x-

axis; y is the second moment of area about the minor axis 
oy;  is the warping constant of the cross section; G is the 
shear modulus of elasticity; is the Saint-Venant torsional 
constant of the cross section. 
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 The stress resultants given in Eq. (18) is defined as  
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where W is the Wagner coefficient. 

4. ARCHES IN UNIFORM BENDING 

4.1. Buckling Equation 

 Fig. (3) shows a circular arch of radius R subjected to 
two equal and opposite end moments. When a simply sup-
ported thin-walled arch is subjected to uniform bend-
ing , the axial stress resultant is . MM x  0zF

The prebuckling curvature due to uniform bending is con-
stant along the arch axis, and can be obtained from Eq. (11) 
as 

x
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 By substituting Eqs. (20) and (21) into the Eq. (18), the 
energy equation for the flexural-torsional buckling of arches 
subjected to the uniform bending is obtained. The buckling 
displacements for the laterally simply supported arch may 
take the form of 
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where a, b are the maximum values of andobu b , respec-

tively. Substituting Eqs. (20), (21), and (22) into Eq. (18) 
and recasting into matrix format produces 
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in which 
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where  is the minor axis flexural buckling load for a 

straight column;  is the torsional buckling load for a 

straight column;  denotes the radius of gyration with re-

spect to the shear center; 

yP

P

or

Ln  ; and n is the number of 

buckled half waves around the arc length L; x denotes the 
monosymmetry parameter. 

 Eq. (23) has a non-trivial solution for a and b when 
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which leads to the quartic equation 
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where the coefficients , , , , and  are given in 

Appendix. 
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 When an infinite radius of curvature is used for Eq. (31), 
the monosymmetric arch degenerates to a straight beam of 

monosymmetric cross-section, and the buckling equation for 
monosymmetric straight beam is given by Eq. (32). 

in which  is the critical buckling moment for 

monosymmetric straight beam considering the effects of 
prebuckling deformations. In Eq. (32), the 
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very small and can be neglected without affecting the results 
so that Eq. (32) can be reduced as eq. (33). 

 Eq. (33) is in close agreement with Pi et al. [16]. When 
the effects of prebuckling deformations on straight beams are 
ignored, the classical buckling moment ( ) for a 

monosymmetric straight beam can be obtained as 
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4.2. Effects of Prebuckling 

 The comparative study on the prebuckling effects is per-
formed by using the monosymmetric I-section shown in Fig. 
(4) with typical material properties (Young’s Modulus; 
E=63,000MPa, Shear Modulus; G=27,000MPa; theses val-
ues are also used throughout this section) and the developed 
length of the arch is L=1,000mm. 

 The closed form solution of Eq. (31) for the flexural-
torsional buckling of the laterally pinned circular arch with 
the section-B in Fig. (4) is compared with that of Pi et al. 
[16]. Fig. (5) shows the variation of the buckling moment 
ratio Mcr/Mcr-MSB with the subtended angle, and the classical 
buckling moment Mcr-MSB of a straight beam of monosym-
metric section can be calculated from Eq. (34). When the 
prebuckling deformation is ignored, the solutions of Eq. (31) 
closely agree with that of Pi et al. [16]. When the prebuck-
ling deformation is considered, the solutions of Eq. (31) gen-
erally close to that of quadratic equation by Pi et al. [16] in 
positive uniform bending, but disagrees with that of Pi et al. 
[8] for the arch with a large subtended angle in negative uni-
form bending. As shown in Fig. (5a), for straight beam with 
section-B in positive bending, the classical buckling moment 
(Mcr-MSB) is 18.7 N-m, while the buckling moment consider-
ing the prebuckling (Mcr-MSB-p) is 23.8 N-m, which is about 
27% higher. In case of the arch (subtended angle is 180 de-
gree) in Fig. (5b), the classical buckling moment is 152 N-m, 
while the buckling moment considering the prebuckling 
(Mcr) is 239 N-m, which is about 57.2% higher. 

 In deriving the cubic buckling equation by Pi et al. [16], 
prebuckling terms including 2( y xI I ) and 3( y x )I I  in the coef-
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Fig. (4). Cross section and dimensions. 

Fig. (5). Buckling of monosymmetric arch in uniform bending. 

efficient of the cubic term is very small, the cubic buckling 
equation was reduced to the quadratic equation in the study 
of Pi et al. [16]. The solutions of the cubic and quadratic 
buckling equation by Pi et al. [16] are compared with those 
of Eq. (31). Fig. (6) shows the variation of the buckling mo-
ment ratio Mcr/Mcr-MSB with the subtended angle. When the 
arch is subjected to the positive uniform bending moment, 
the solutions of the cubic and quadratic buckling equation by 
Pi et al. [16] closely agree with those of Eq. (31) without 
reference to the ratio of xy II  of the minor axis flexural 

stiffness to the major axis flexural stiffness. However, in 
case of the negative uniform bending, the solutions of Pi et 
al. [16] disagree with Eq. (31) as the subtended angle and the 
ratio of xy II  increase. The buckling moment predicted by 

the cubic equation by Pi et al. [16] is 6.13% higher than the 

Eq. (31) for Section-C with , and the buckling mo-

ment of the quadratic equation by Pi et al. [16] is 13.9% 
higher than the Eq. (31). Therefore, as the subtended angle 

increases, the quadratic buckling equation by Pi et al. [16] 
must be used with caution when the ratio of 

180

xy II is not 

small. Also it is found that the buckling equation of Pi et al. 
[16] estimate the flexural-torsional buckling strength too 
highly, and this is because that the terms referring to the 
prebuckling deformation with curvature effects such as 

/o ov u R   in Eq. (5) are not considered in the strain-

displacement relations of Pi et al. [16]. 

 In order to investigate the influence of the higher order 
prebuckling terms with curvature effects on the buckling 
resistance of arches, the solutions of Eq. (31) are compared 
with the approximate solutions of Eq. (31). The approximate 
solution can be obtained by neglecting the higher order 
prebuckling terms with curvature such as 2/ , /o o ov u R v R     

from the nonlinear strain-displacement relationship of Eq. 
(5). The variations of the buckling moment ratio of the 
monosymmetric arch in uniform bending moment are plotted 
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(a) Cross section                            (b) Dimension 
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Fig. (6). Comparison of present results with those of Pi et al. [8]. 

Fig. (7). Effects of the higher order prebuckling terms with curvature. 

in Fig. (7) with varying the ratio of xy II . As shown in Fig. 

(7), the approximate solutions of Eq. (31) agree well with the 
accurate Eq. (31) except for a large subtended angle or small 
radius of curvature. Therefore, the approximate solutions of 
Eq. (31) can be used to predict the flexural-torsional buck-
ling moment of the arch without a significant loss of accu-
racy. 

5. CONCLUSIONS 

 In this paper, the elastic flexural-torsional buckling of 
monosymmetric arches subjected to the uniform bending has 
been investigated by considering the effects of prebuckling 
deformations. After using the nonlinear strain-displacement 

relations considering initial curvature effects and higher or-
der prebuckling deformation terms with curvature in deriv-
ing process, closed form solution for the buckling moment 
has been obtained based on the energy method. 

 When the prebuckling deformation is ignored, the quartic 
equation of Eq. (31) closely agrees with that of Pi et al. [16]. 
When the prebuckling deformation is considered, the pro-
posed quartic equation generally close to that of buckling 
equation by Pi et al. [16] in positive uniform bending, but 
disagrees with that of Pi et al. [16] for the arch with a large 
subtended angle in negative uniform bending. As the sub-
tended angle increases, the quadratic buckling equation pro-
posed by Pi et al. [16] must be used with caution when the 

0.0 

0.2 

0.4 

0.6 

0.8 

1.0 

1.2 

1.4 

1.6 

0 30 60 90 120 150 180

M
cr

/M
cr

-M
SB

SUBTENDED ANGLE, DEGREE

Eq. 31

Pi-Quadratic Eq.

Pi-Cubic Eq.

Eq. 31

Pi-Quadratic Eq.

Pi-Cubic Eq.

Section A
Iy/Ix=0.2178

Section C
Iy/Ix=0.5141

     

0 

2 

4 

6 

8 

10 

12 

14 

16 

18 

0 30 60 90 120 150 180

M
c

r/M
cr

-M
S

B

SUBTENDED ANGLE, DEGREE

Eq. 31

Pi-Quadratic Eq.

Pi-Cubic Eq.

Eq. 31

Pi-Quadratic Eq.

Pi-Cubic Eq.

Eq. 31

Pi-Quadratic Eq.

Pi-Cubic Eq.

Section A
Iy/Ix=0.2178

Section B
Iy/Ix=0.3954

Section C
Iy/Ix=0.5141

 

(a) Positive Uniform Bending                             (b) Negative Uniform Bending 

0.0 

0.2 

0.4 

0.6 

0.8 

1.0 

1.2 

1.4 

1.6 

0 30 60 90 120 150 180

M
cr

/M
cr

-M
SB

SUBTENDED ANGLE, DEGREE

Eq. 31

Approximation

Eq. 31

Approximation

Eq. 31

Approximation

Section A
Iy/Ix=0.2178

Section C
Iy/Ix=0.5141

Section B
Iy/Ix=0.3954

     

0 

2 

4 

6 

8 

10 

12 

14 

16 

0 30 60 90 120 150 180

M
cr

/M
cr

-M
SB

SUBTENDED ANGLE, DEGREE

Eq. 31

Approximation

Eq. 31

Approximation

Eq. 31

Approximation

Section A
Iy/Ix=0.2178

Section B
Iy/Ix=0.3954

Section C
Iy/Ix=0.5141

 

(a) Positive Uniform Bending                             (b) Negative Uniform Bending 



Elastic Stability of Circular Arches with the Open Thin-walled Monosymmetric The Open Civil Engineering Journal, 2012, Volume 6    95 

ratio of xy II is not small. Since the terms referring to the 

prebuckling deformation with curvature effects such as 
/o ov u R   are not considered in the strain-displacement rela-

tions of Pi et al. [16], the buckling equation of Pi et al. [16] 
can slightly overestimate the flexural-torsional buckling 
strength of monosymmteric arches. 

 By neglecting the higher order prebuckling terms with 
curvature from the nonlinear strain-displacement relation-
ship, the accurate quartic equation of Eq. (31) has been sim-
plified as the approximated form. It is found that the higher 
order prebuckling terms with curvature has no effects on the 
buckling strength of monosymmteric arches. Therefore, the 

higher order prebuckling terms with curvature such as 
2/ , /o o ov u R v R     in the nonlinear strain-displacement rela-

tionship can be neglected without a significant loss of accu-
racy. 
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APPENDIX 

 The quartic equation is given by 
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