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Abstract: This work concerns the stress-state identification, produced by loads or dislocations, of statically indeterminate 

structures. In particular, this paper deals with the case of pin-jointed trusses, since they are a combination of simplicity of 

the structural model with very interesting technical applications. We present an approach that follows the main guidelines 

of the flexibility method to relate an additional load and the consequent nodal displacements. When a sufficient number of 

nodal displacements are measured, they produce a system of equations that when solved furnishes a complete reconstruc-

tion of the stress-state to identify. In order to highlight the potentialities and the limits of the proposed approach and also 

to delineate its main characteristics, some simple tests are discussed and analyzed. 
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1. INTRODUCTION 

 Knowledge of the stress-state of a mechanical part, such 

as an engine, a wheel or a gear, is significant for the mechan-

ical industry since the excess of stresses could give rise to a 

premature and sudden break. In order to design possible 

reiforcements and risk assessments, an in-depth knowledge 

of the actual stress-state on a structure is necessary in the 

field of civil engineering. Another research field where the 

identification of the actual stress has some relevant applica-

tions is biomechanics: an enlightening example is related to 

the determination of artery hypertension, as reported by 

[1]. These brief discussions contribute in highlighting the 

importance of these issues in the scientific community. 

 It is known that a complete estimation of the stress-state 

is required for residual stresses, i.e. stresses corresponding to 

null loads [2]. In the technical literature, various approaches 

have been reported in relation to the problem of identifying 

the actual state of stress in a structure. These methods can be 

subdivided into destructive and nondestructive tests. The 

first class of methods includes all the tests requiring an hole 

or a cut on the selected part. This causes a relaxation of the 

stress field and consequent displacements; the measurement 

of such displacements gives the data required to reconstruct 

the pre-existing stress field. In fact, it is enough to impose 

the opposite of the measured displacement field and derive 

the consequent stress field, for example the papers of [3] and 

[4]. Destructive tests obviously have the disadvantage to par-

tially or totally compromise the element to test. 

 On the other hand, nondestructive tests to some extent 

deduce the stress field by measuring the effects induced by a 

prescribed signal. Among others, the method based on the 
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X-ray diffraction is quite widespread but limited by the poor 

capacity of penetration. Another well-established approach is 

the ultrasonic one, based upon the dependence between the 

wave velocity and stresses. For both these methods, the book 

of [5] contains a brief introduction and several references. 

Also the article of [6] introduces the use of magnetophotoe-

lasticity in this same framework. 

 Both in the static and dynamic fields signals and meas-

urements of mechanical type, forces and displacements, have 

been considered, both in static and dynamic field. In the 

technical literature [2] is an attempt to frame the problem 

furnishing some useful and fairly general guidelines [7]. 

shows that residual stresses are defined on the boundary 

when the Dirichlet to Neumann map is known [8]. gives 

some useful comments on the modeling of the residual stress 

suggesting the use of a model based on the Hartig’s law. 

These suggestions are also partially described in [9], which 

improves the model already presented in [7] showing the 

iniectivity of the map. Another interesting work contained in 

[10] concerns the identification of pre-stressed cable struc-

tures by dynamic tests. 

 This work has initially portrayed a nondestructive stress-

state identification strategy applicable to real structural prob-

lems. The work provide details about simplicity and tech-

nical application of the pin-jointed trusses, which allow to 

explore the essential aspects of the problem without involv-

ing heavy computations. However, the formulation devel-

oped for pin-jointed trusses can be easily extended to any 

problem discretized by finite elements by using the matrix 

language. 

 The paper shows the significance of the relation between 

an additional static load and the consequent displacements 

on the examined structure. Moving into the framework of the 

force method, this relation is written using standard elasticity 

hypotheses such as Hooke's law and small displacements. 
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Some brief consideration relative to the use of the Hartig's 

law are also presented. Here, the choices in the design of the 

proposed algorithm were simple in order to be easily imple-

mented on an actual problem. This, for example, was the mo-

tivation to use the additional static loads with respect to 

those dynamical. 

 After this brief introduction, Section 2 contains a brief 

discussion on the statement of the underlying identification 

problem and a discussion on the main tools used to build the 

identification strategy for statically indeterminate pin-jointed 

trusses. Also some remarks on the possible use of Hartig's 

law are briefly sketched. Section 3 comprises of some results 

on simple pin-jointed truss structures useful to illustrate the 

main characteristics of the proposed approach. Concluding 

remarks are elaborated in Section 4.  

2. IDENTIFICATION PROBLEM: STATEMENT AND 
TOOLS 

2.1. Problem Sketch 

 It is considered an assigned configuration of a pin-jointed 

truss, denoted as current, the structure is also considered in 

equilibrium under the external loads. Axial forces on the 

truss are collected in the vector t and can be produced by 

loads and dislocations such as thermal variation or lack of fit 

between the bars. The identification of vector t should be 

done by a simple procedure possibly adaptable to in situ 

tests. In case the system is statically determined the problem 

can be solved through the solution of equilibrium equations, 

obviously. Conversely, if the truss is statically undetermined 

it is necessary an ad hoc identification procedure. 

 Beginning from the current configuration, an additional 

load was applied and the truss moves to a new configuration 

denoted as test configuration. The increment of axial forces 

and of nodal displacements were denoted by    and    respec-

tively. The question is wheter it is possible to identify the 

axial force vector   by assuming the adequate number of the 

displacement increments of the vector    as known? It has 

been assumed that identification problem can be treated as 

linear and elastic by considering the position of each node in 

the current configuration, and so the length of each bar, the 

material constant, such as the Young's modulus, and, finally, 

the cross-section area of each bar as known. 

 There are, basically, two alternative ways to solve the 

identification problem as mentioned earlier. The first follows 

the guidelines outlined by the stiffness method that substan-

tially assumes the nodal displacements as primary unknows. 

On the other hand, the second method is the flexibility meth-

od which assumes the axial forces on the truss as primary 

unknowns. Here, the unknowns factors are axial forces and 

so the preferences will be given to the second method. The 

potentialities of the flexibility method was explored to build 

an algorithm able to solve our problem. In the next section, 

the identification problem will be defined in a more formal 

way by building a tool which will generate the system of 

equations and solving those equations the axial force vector   

will be obtained. 

 

2.2. Tools 

 Following the way traced in [11] and more recently in 

[12], an assembly of b bars and j joints on which c kinematic 

constraints prevent some displacements has been considered. 

External forces acting on uncostrained joints are collected in 

the       -dimensional vector   where d is equal to 2 or 3 

for two- and three-dimensional problem respectively. The 

equilibrium matrix   links the axial forces on the bars col-

lected in the b-dimensional vector   with the load vector   
     (1) 

and, consequently, has dimensions           . 

 Kinematic compatibility is ensured by the matrix   
  , see [13], which links the       -dimensional vector   

of nodal displacements to the b-dimensional vector   binding 

bar elongations  

      (2) 

 The relation between bar elongations e and axial forces t 

can be written by means of the axial flexibility matrix F and 

the vector    of the imposed bar elongation collects bar elon-

gations deriving for example from thermal variation or lack 

of fit between bars. We can write this constitutive relation as 

        (3) 

 Flexibility matrix is square, with b-dimension, and diag-

onal with the i-th term, in the case we use Hooke's law, 

which is equal to 

   
  

    
 (4) 

and depends on the length   , the cross-section area    and 

the Young's modulus    of the i-th bar. It has been empha-

sized that the above relation is deduced from the St. Venant's 

problem and therefore is referred to the initial and stress-free 

configuration. 

 Here the case of statically indeterminate and kinematic-

cally determined pin-jointed trusses as defined in [11] are 

considered. A structure is supposed to belong to this class if 

the equilibrium system of equations has infinite solutions for 

any right hand side for the equilibrium system (1), while the 

compatibility system of equations (2) has a unique solution 

for some particular right hand side, but otherwise has no so-

lution. This choice derives from the technical importance of 

this class of structures. Systems of equations (1), (2) and (3) 

can be arranged in various ways to find the unknown vector 

 ,   and   of the so-called direct problem, giving the well-

known solution algorithm, such as the force method and the 

displacement method. 

 For the stress state identification problem defined above 

the force method appears to be the most promising. The road 

traced by the force method works by assuming the bar axial 

forces as primarily unknowns. This method can be synthe-

sized starting from the representation of bar axial forces 

which satisfy, a priori, the equilibrium equations: 

         (5) 

where    solves the system of equations       and the k-th 

column of  , that is   , solves the homogeneous system of 

equations      . Using the constitutive equations (3), the 

bar elongation vector can be expressed as 

              (6) 
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and, finally, the imposition of the kinematic compatibility in 

the form proposed in [11] 

      (7) 

produces the final system of equations 

                  (8) 

 The same result can be obtained by imposing the kine-

matic compatibility through the use of the virtual work theo-

rem, precisely the virtual force theorem, see for example 

[13]. The theorem of virtual forces can also be used to evalu-

ate nodal displacements by using the relation 

                (9) 

where   and   are, respectively, the axial force vector and 

the nodal displacement vector deriving from the solution of 

(8), while    is a solution of the problem       . It is enough 

to choose as    as a vector with the only nonzero component 

equal to unity in correspondence with the displacement to 

calculate and obtain the formula 

              (10) 

where    corresponds through the equilibrium matrix, to the 

particular choice of   . Writing (10) for two distinct solutions 

of (8) labeled with 1 and 2 we obtain 

           (11) 

where to slim the notation we have used the positions 

         and         . 

In the i-th diagonal term of the matrix  , see (4), there is the 

initial bar length that is unknown in our problem while the 

current bar length is known. For a generic bar and two dis-

tinct configuration 1 and 2, the elongation increment is worth 

         
 

  
   (12) 

while the bar length referred to state 1 is 

            
  

  
  (13) 

Combining the last two relations we obtain 

  
  

     
   (14) 

and so the corresponding diagonal term of the flexibility ma-

trix referred to the current configuration is 

     
  

     
 
 
 (15) 

Finally, nodal displacement increments collected in the vec-

tor    can be written as 

          (16) 

where    is formed simply by binding the    corresponding to 

the considered nodal displacements. 

With these simple tools can be identified the axial forces in 

an assigned configuration, for example in the current, which 

can be reached under the action of loads and imposed elon-

gations. By imposing an additional load on the structure pro-

duces both the increment of axial forces    and of nodal dis-

placements   . In general, only a part of this displacement 

increments is measurable. We denote with     the subset of 

   measured. Axial forces to identify   and their increments    
produced by the additional load, can be represented in such a 

way that they satisfy the equilibrium equations:  

         (17) 

           

where the unknown quantities are collected in   and   . Rela-

tion (16) can be seen as a system of equations containing the 

unknowns   and    while     is the known term.  

2.3. Remarks on the constitutive law 

 We have discussed above a simple strategy for the identi-

fication of the axial forces in pin-jointed trusses based on 

standard hypotheses of linear elasticity. Here, as suggested in 

[8], some possible modifications to the constitutive law will 

be considered briefly in order to modify (15) in accordance 

with the Hartig's law instead of the classic Hooke's law. 

 Hartig's law, see [14], can simply be written as 

  
  

  
       (18) 

where the Young's modulus  , defined as incremental ratio 

between the stress   and the engineering strain  , depends 

linearly on   through two constitutive coefficients:   , id est 

the Young's modulus for    , and the dimensional coeffi-

cient  . The stress can explicitly be written as 

  
  

 
         (19) 

from which the engineering strain can easily be deduced 

   
 

 
     

  

  
  (20) 

 Considering the above two different states, denoted with 

1 and 2, for a generic bar of the truss, simple algebraic ma-

nipulations permit to write the elongation increment as 

        
     

    
   (21) 

and by using (20) 

  
 

  
 

  
            

     

  
 

 
  

       
   

 (22) 

where the axial force      and its increment         on 

the considered bar are used. This relation links the elonga-

tion increments and axial force increments for the considered 

bar and consequently furnish the definition of the flexibility 

coefficient for the bar.  

 The flexibility coefficient for a generic bar can also be 

derived by linearizing Hartig's law as reported in [8]. Start-

ing from the linearization 

                      (23) 

the combination of (21) and (20) gives 

   
  

            
 

 
  

       
   

 
   (24) 

that is the link between    and    which again defines again the 

flexibility coefficient of the considered bar. Hartig's law or 

its linearized version produces only a different evaluation of 

the flexibility coefficients and its use in a stress-state identi-

fication algorithm should be evaluated by comparing costs 

and benefits. 
3. SOME RESULTS 

 Here some results referred to simple pin-jointed trusses 

are being discussed. The aim is to explore the main features 

of the proposed identification strategy and to render the prin-

cipal drawbacks evidently. 

 In the following, trusses formed by bars with the same 

Young's modulus   and cross-section area   have been con-

sidered. Where necessary for numerical calculations, 
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      GPa and        cm
2
 corresponding to an iron L-

profile 40 x 5 (UNI 5783-73) have been assumed. 

3.1. First example: Two-Bar Truss 

 The current configuration of the two-bar pin-jointed truss 

sketched in Fig. (1) has been considered as first example. 

 
Fig. (1). Two-bars truss problem: geometry of the current configu-

ration. 

 

 If the natural or stress-free length of each bar is      
 , on each bar there is an axial force        . In order to 

identify the axial forces, starting from the current configura-

tion, a horizontal force    on the central node has been ap-

plied. The symmetry of the problem produces a horizontal 

displacement            which characterizes the test con-

figuration. 

 Assuming the equilibrium of the axial forces in the cur-

rent configuration, both   and its increment   , can be repre-

sented as 

     (25) 

           
since      because there are no external loads in the cur-

rent configuration. Vectors   and    have only one compo-

nent and represent, for example, the axial force and its in-

crement on the 2nd bar. 

 It is simple to prove that the self-stress matrix   is equal 

to 

   
 
 
  (26) 

while the vector     is worth 

      
 

 
  (27) 

and, finally, the matrix    assumes the following form 

        (28) 

 Consequently, the relation between the horizontal dis-

placement increment    of the central node and the stress-

state, current and its increments, is 

          
  

    
        (29) 

and can be used to evaluate the unknown   if it is observed 

that for the symmetry              and that the incremental 

displacement    is, in our identification problem, a measured 

quantity and therefore should be treated as known. It results 

  
 

 

    

  
    (30) 

which, using the first of (25) to evaluate  , produces the 

same value of the reference solution. 

 First of all the symmetry condition was used in this case 

as there was only one measurable displacement. Secondly, 

an error free solution was obtained since the position of the 

central node is the same both in the current and natural con-

figurations. In more general examples below, we have the 

possibility to evaluate the identification error when current 

and natural configurations are different. 

3.2. Second Example: Three-Bar Truss 

 The stress-free configuration of the three-bar truss is il-

lustrated in Fig. (2a). 

 If an imposed elongation    is applied on the 2nd bar, for 

example deriving from an increment of temperature, this 

produces a vertical displacement of the free node and axial 

forces on all the bars. In order to simplify the calculations, 

we choose for the imposed elongation the value 

     
        

            
  (31) 

that produces a vertical displacement of the free-node just 

equal to   and the axial force vector 

  
        

            
  

          

       

          
  (32) 

 The identification of this axial force vector following the 

proposed procedure starts from the calculation of the vector 

   , of the self-stress matrix   and of the matrix    Fig. (2b). It 

is convenient for these calculations to consider the statically 

determined schemes reported in Fig. (3). 

 More precisely,     derives from the solution of the equi-

librium equations related to the scheme reported in Fig. (3a) 

and results 

   
 

  
 
       

 
        

  (33) 

while   derives from the solution of the equilibrium equa-

,,,,  

Fig. (2). Three-bar truss problem: geometry of the stress-free configuration (a) and current configuration with test load (b). 
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Figur e 2. Three-bar truss problem: geometry of the stress-free configu-
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tions related to the scheme reported in Fig. (3b). 

  
 

  
 
  

  
  

  (34) 

and, finally, the matrix    can be written by referring to the 

schemes reported in Fig. (3c) and (3d) and produces the fol-

lowing results 

   
  

 
 
    
   

  (35) 

The displacement increment vector relative to the only free 

node can be be calculated as 

          (36) 

being the term relative to  -th bar of the diagonal matrix    

equal to 

    
  

     
 (37) 

 The use of axial force representation (17) permits to cal-

culate the explicit expressions of the horizontal    and verti-

cal    displacement increment of the free node. The result is 

then 

     
    

   
 

  
 
 (38) 

     
         

   
 

  
 

 

 Assuming that both    and    are measured and conse-

quently known, we can evaluate the unknowns   and    that 

take on the values 

        
    

  
 (39) 

       
  

  
     

and using (17) the axial force vector to identify. It follows 

that 

    

 
 
 
 
       

    

  

      
    

  

      
    

   
 
 
 
 

 (40) 

where it was noted that for this problem it is necessary to use 

a horizontal force as test load in order to avoid a null value 

of horizontal displacement   . 
 For the purpose of this work, a reference solution for dis-

placement increments    and    can be calculated by studying 

the problem reported in Fig. (2a). Using the stiffness meth-

od, the equilibrium imposed on the current configuration, see 

again Fig. (2a), immediately produces the values 

   
   

  
           (41) 

   
   

  

               

                
 

where the elasticity coefficients       of the i-th bar are re-

ferred to the stress-free state that in this calculation is con-

sidered as known. 

 Now, the identification error is defined as  

  
  id  ref 

  ref 
 (42) 

 
Fig. (3). Three-bar truss problem: auxiliary schemes for the identification problem. 

Table 1. Three-bar Test: Identification Error   Varying     Ratio 
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Figur e3. Three-bar truss problem: auxiliary schemes for the identifica-

tion problem.
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where as      is the assumed value of (32), simple calcula-

tions show that this error is only dependent on the     ratio.  

 Table 1 shows the identification error as the     ratio in-

creases in the case of     m,          N and         

N. It was noted that, in the range considered for the     ra-

tio, the identification error depends practically on a linear 

way from     in such a way that makes the proposed identi-

fication strategy accurate. 

3.3. Third Example: Six-Bar Truss 

 In the third test we consider the stress-free state of the 

six-bar pin-joined truss was considered as reported in Fig. 

(4a). An equilibrated self-stress field can be achieved by in-

creasing temperature     on the 3-rd bar. This produces a 

displacement of the 4-th node, depicted in Fig. (4b), denoted 

by the parameter  . 

 It is very simple to calculate the displacement parameter 

  by using the flexibility or the stiffness method. It assumes 

the value 

  
 

    
      (43) 

where    is the thermic dilatation coefficient characteristic 

of the considered material. The corresponding vector of axial 

forces which needs to be identified is equal to  

  
   

 

 
 
 
 
 
 

 
 

   
 
 
  

 
 
 
 
 

 (44) 

 Our identification process uses the forces    and    on the 

4-th node as a mechanical signal, see Fig. (4c), and as meas-

ured displacement increments that do not assume the zero 

value 

    

   
   
   
   

  (45) 

where    and    are the horizontal and vertical displacement 

of the k-th node, respectively. 

 As in the previous examples, both the vector of axial 

forces   and its increment    can be represented as 

     (46) 

           
 In this case,   and    collect the axial forces and their in-

crements produced by the additional forces,     and    , on 3rd 

and 4th bar. Vector     and matrix   can easily be calculated 

by referring to the schemes reported in Fig. (5a) and Fig. 

(5,b-c) respectively. 

 Using the parameters                and 

                  , they assume the values 

    
 

     

 
 
 
 
 
 
 
    

       

           
 

 
 

         

           
 
 
 
 
 
 

 (47) 

  

 
 
 
 
 
 
 
 
 

    

      

    

      

 
  

 

 
  

 

 
 

 
 

   

      

   

      

 
 

 
 
 
 
 
 
 
 
 

  (48) 

 Matrix    can be calculated by making use of the auxilia-

ry schemes reported in Fig. (6). It takes the value 

   

 
 
 
 
 

  
  

  
  

  
  

  

     

  

     

  

     

  

     

  
  

 

     

 

     

 

     

 

      
 
 
 
 

 (49) 

 In order to calculate (16) it is necessary to add the ex-

pression of the diagonal element of the flexibility matrix    

corresponding to the i-th bar 

    
  

     
 (50) 

 Assuming the known the displacements collected in    the 

solution of (16) can be achieved in the following two steps 

       (51) 

      

 This is necessary since the problem defined by (16) is 

nonlinear in the unknowns collected in   and also convenient 

for the particular structure of matrix   . 

 For the first system of (51), simple calculation provides  

              (52) 

   

      
          

           
     

      

          
   

     
 

   

      
          

           
     

      

          
   

     
 

while there are no conditions on    and    The particular 

structure of    permits the following rearrangement 

 

     
     
     
     

     

     

 
 

      
      
      
      

      

      

 
 

  

  

  

   
   

  

 
 
 
 
            

            

            

             
 
 
 

 (53) 

which, when solved, gives the unknowns 

   
                

 
                   

 
 

                 
 

    
                 

 
                   

 
 

                 
 (54) 

   
                 

                 

 

    
                 

                 

 

where the following positions are used  
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                                 (55) 

                                 
 As in the examples illustrated above, in order to compare 

the obtained results it is necessary to estimate the nodal dis-

placements collected in   . This can be done by evaluating 

the displacements of the scheme reported in Fig. (4c) caused 

by the forces     and    . 

 By referring to the current configuration and in the 

framework of the flexibility method, axial force increments 

on the 3rd and 4th bar, see (8), can be computed from the 

following system 

 
   

    

      

 

     

    

      
    

  
   
   

  
  

 
          

    

      

 

   

  (56) 

that when it is solved it produces 

 
   
   

  
       

                       
 
  

 
       

      
  (57) 

from which, using (5),    can be calculated. Successively, the 

requested displacements can be calculated by means of vir-

tual work (9). 

 Results deriving from the proposed identification ap-

proach depends again only on the     ratio. In the range 
 

 
               it varies in a practically linear 

fashion from                        .  

 It is also interesting to study how the proposed identifica-

tion approach is affected by the errors that certainly exist in 

the considered identification problem. For example, nodal 

displacements are obtained from measurements and thus are,  

 

certainly, affected by errors. In order to simply evaluate the 

effects of measurement errors, we indicate with   and    the 

real and the measured displacements respectively. In this 

case the data error parameter   can implicitly be defined as 

          (58) 

 Table 2 reports for            the identification error 

increasing data error parameter  . In addition to data report-

ed in the beginning of this section we have assumed     

m,          N and         N. 

 These results show, in an unambiguous way, the necessi-

ty of special techniques to filter the errors that are always 

present in the data. A filtering strategy such as that proposed 

by Tikhonov [15] could be useful to solve actual problem. 

4. CONCLUDING REMARKS 

 This paper has sketched an identification procedure able 

to reconstruct actual axial forces on a pin-jointed truss. The 

proposed procedure is based on the results gathered through 

a simple mechanical test that uses a prescribed load and the 

measured displacement induced. In the framework of the 

flexibility method, the link between the axial forces to be 

identified and the structural response to the test load is de-

scribed in the context of standard linear elasticity. 

 In Section 3 simple numerical tests showed the main 

characteristics of the proposed procedure and also highlight-

ed its performances. When measurement errors are taken into 

account, a quick view of the identification of axial forces 

suggests that an ad hoc procedure is strongly necessary to 

filter such errors as it is usual in the identification proce-

dures. 

Table 2. Six-Bar Truss Problem: Identification Error   Varying Data Error Parameter   for           . 

                      

                                          

 
Fig. (4). Six-bar truss problem: stress-free configuration (a), current configuration (b) and test load (c). 

 
Fig. (5). Six-bar truss problem: auxiliary schemes for the calculations of (t) and (s) 
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 Some future developments are synthetically listed below: 

1. In this work we have considered only statically indeter-

minate and kinematically determined pin-jointed trusses, it 

appears interesting to extend this approach to prestressed 

mechanisms.  

2. Only simple problems were considered here. Problems of 

medium and large dimensions, specially from the technical 

point of view, require particular care and specific strategies 

to be computationally efficient. 

3. Although the flexibility method appears to be more 

promising as framework to identify the stress-state, the capa-

bilities of the stiffness method should be adequately ex-

plored. 

4. Implementations of more sophisticated constitutive laws 

as briefly described in Section 2, have to be explored to un-

derstand computational costs and advantages. 

5. Pin-jointed trusses were considered important due to their 

technical applications and also for the simplicity of the 

mathematical model which used to study them. Viewing the 

procedure presented here in a finite element framework, a 

small effort would be adequate for the natural extension of 

the results presented here. 

6. As it is well known, the solution of an identification 

problem necessarily requires specific strategies capable of 

filtering errors which cannot be eliminated, e.g. those on the 

data. Such errors occur from various causes for e.g. inaccu-

racy of the data, approximation of the mathematical model 

and sometimes due to the numerical model and rough accu-

racy of the solution algorithm. Although there are numerous 

general purpose strategies that can be used to reduce the 

aforementioned errors but a specifically designed procedure 

has its own benefits as it can deal with specific problem. 

7. Finally, it would be interesting to explore the results ob-

tained from a geometrically nonlinear model. 
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Fig. (6). Six-bar truss problem: auxiliary schemes for the calculation of matrix   . 
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Figur e 6. Six-bar truss problem: auxiliary schemes for the calculation

of matrix T̃.
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