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Abstract: A new theory is presented to design pressurized conduits, particularly rectangular shaped conduit with 

triangular bottom. This theory is based on a referential rough conduit model characterized by an arbitrarily assigned 

relative roughness taken in the rough turbulent flow regime. Thus, the geometric elements of the chosen model are well 

defined. In particular, the relative height of the rough model, which is expressed by an implicit relationship, has been 

resolved by an appropriate limited development. The obtained relationship is used to calculate the almost exact value of 

the relative height of the model depending solely on the given side slope. The absolute height of the rough model is given 

by an explicit relationship based on measurable data in practice, such as side slope, discharge and energy slope. The 

required linear dimensions of the conduit are obtained by multiplying the homologues linear dimensions of the rough 

model by a non-dimensional correction factor which depends on the known rough model characteristics. Practical 

examples are presented to explain the procedure of calculation and to better understand the advocated method. 
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1. INTRODUCTION 

 The design of conduits or channel is one of the three 

great categories of problems encountered in hydraulic 

engineering practice. This consists in determining the linear 

dimensions of the conduit for given parameters such as 

discharge Q, energy slope J, absolute roughness  which 

characterizes the state of the inner wall of the conduit and 

kinematic viscosity  [1]. Taking for example the case of 

circular pipe, the diameter D is related to these parameters by 

the following functional relationship [1-3]: ( , , , )D Q J   . 

The absolute roughness and the kinematic viscosity are 

measured in practice and rarely cause any particular 

problem. It is particularly important to consider the 

kinematic viscosity to make the solution of the problem of 

design covering the entire domain of turbulent flow. When 

the conduit is characterized by more than one linear 

dimension, one of them must be among the given data of the 

problem, such is the case of the pressurized vaulted 

rectangular conduit which is characterized by two linear 

dimensions, namely the height of the conduit and the 

diameter of the vault [4]. Design of conduits problem is often 

solved using the three basic relationships of turbulent flow, 

namely Darcy-Weisbach, Colebrook-White and Reynolds  
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number [5-8]. The difficulty lies in assessing the friction 

factor since the Colebrook-White relationship is implicit. 

Moreover, the three basic equations of turbulent flow do not 

allow expressing the geometric element of the conduit in an 

explicit form. The solution involves many trials and tedious 

computations or laborious graphical solutions. The 

implicitness of the solution is found in the entirety of the 

geometric profiles known in practice. For pipe-flow problem, 

some authors have proposed approximate relation or 

graphical solution for the diameter of the pipe [8, 9]. 

Referring to the literature, one can find studies on the 

circular pipe but no study is published on pressurized 

rectangular shaped conduit with triangular bottom despite its 

extensive use in practice as water supply lines, sanitary 

sewers, culverts and storm drains or penstocks as well. In 

addition to its practical relevance, it is one of the rare 

geometric profiles whose design problem does not require 

the knowledge of one of the three linear dimensions that 

characterize it. Moreover, the study will show that this type 

of geometric profile induced interesting mathematical 

equations and remarkable hydraulic conclusions. This study 

was initiated to enrich the literature by studying this type of 

conduit under pressurized condition of the flow. The design 

problem is tackled with a new theoretical approach known as 

the referential Rough Model Method (RMM) which has been 

proven in the recent past [1, 4, 10-15]. Our attention is 

focussed on the computation of the three linear dimensions 

of the conduit using the strict minimum of data. The three 

basic equations of turbulent flow are applied to a rough 
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conduit model characterized by an arbitrarily assigned 

relative roughness value. Firstly, the method is applied to a 

rough model of the same shape in order to establish the 

equations governing its geometric and hydraulic 

characteristics. These equations are then secondly used to 

easily deduce the required linear dimensions of the current 

conduit by introducing a non-dimensional correction factor. 

Resulting RMM equations are not only explicit but also 

cover the entire domain of Moody diagram [6], 

corresponding to Reynolds number 2300R  and relative 

roughness varying in the wide range [0; 0.05].  

 Unlike to current methods, the application of the MMR 
for designing conduits or channels does not require the 
introduction of the friction coefficient as defined by 
Colebrook-White neither Chezy’s coefficient nor Manning’s 
roughness coefficient which are determined with great 
difficulty. This is the major advantage of the method. The 
three basic equations of turbulent flow are then very easy to 
handle.  

2. BASIC EQUATIONS 

 The relationships on which the study is based are simple 
well known hydraulic equations namely, Darcy-Weisbach 
equation, Colebrook-White equation and Reynolds number 
formula. The Colebrook-White relationship was established 
for the circular pipe but its application can be extended to all 
other geometric profiles [5]. The energy slope of a conduit or 
channel is given by the Darcy-Weisbach relationship as: 

2

2
2

h

f Q
J

D gA
   (1) 

where Q is the discharge, g is the acceleration due to gravity, 
A is the wetted area, Dh is the hydraulic diameter and f is the 
friction factor given by the well known Colebrook-White 
formula as: 

/1 2.51
2 log

3.7

h
D

f R f


  

 
 
 

   (2) 

where   is the absolute roughness and R is the Reynolds 
number which can be expressed as : 

4Q
R

P
    (3) 

where   is the kinematic viscosity and P is the wetted 

perimeter. 

3. REFERENTIAL ROUGH MODEL 

3.1. Relationship of the Height Y  

 The application of the rough model method (RMM) is 
based, for the sake of calculation, on a referential rough 
model shown in Fig. (1). 

 The rough model is characterized by three linear 

dimensions, namely the horizontal dimension a  and the 

vertical dimensions y andY . The triangular section at the 

bottom of the conduit is characterized by a side slope m 

horizontal to 1 vertical. The rough model we consider is a 

pressurized rectangular conduit with triangular bottom 

characterized by / 0.037
h

D   as the arbitrarily assigned 

relative roughness value. The chosen relative roughness 

value is so large that the prevailed flow regime is fully 

rough. Thus, the friction factor is 1 / 16f   according to Eq. 

(2) for R R  tending to infinitely large value. Applying Eq. 

(1) to the rough model leads to: 

2

2

2h

f Q
J

D g A

   (4) 

 Bearing in mind that 4 /
h

D A P and 1 / 16f  , Eq. (4) 

can be rewritten as: 

2

3

1

128

P
J Q

g A

   (5) 

 The wetted perimeter P and the water area A  are 

expressed in different forms, depending on the chosen linear 

dimension. If one selected the linear dimension " y ", then 

P and A are respectively: 

22 1 1
Y

P y m m
y

 
     

 
   (6) 

2
2 1

Y
A my

y

 
   

 
  (7) 

 Inserting Eq. (6) and Eq. (7) into Eq. (5) leads to: 

*2
1

3 128
2

1
Qz

z





 
 
 
 


   (8) 

 where : 

2
1 2 2 1 1m m       (9) 

3
2 m    (10) 

 
Fig. (1). Rough model of a pressurized rectangular shaped conduit 

with triangular bottom.  
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 2 1z     (11) 

Y

y
    (12) 

*

5

Q
Q

gJ y

   (13) 

 Eq. (12) and Eq. (13) express respectively the relative 

height of the rough model and the relative conductivity 

related to the vertical linear dimension y . Note that for

1z  , the relative height is 1  according to Eq. (11). As 

a result, Eq. (12) indicates that y Y . This configuration 

corresponds to a rough triangular shaped model whose 

height is equal to that of the rough model shown in Fig. (1). 

Accordingly, Eq. (8) becomes: 

*2
1

2 128

1
1

Q



 
 
 

   (14) 

where the relative conductivity
*

Q can be written as: 

*

5 5

Q Q
Q

gJ y gJ Y

     (15) 

 According to Eq. (14) and Eq. (15), one can deduce: 

1/5
1/5 2
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2128

1 Q

g J
Y





  
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
   (16) 

 Assuming Q Q and J J , Eq. (16) is rewritten as: 

1/51/5 2
1

2128

1 Q

gJ
Y





  
     

   


   (17) 

 For the given data m, Q and J, Eq. (17) allows to 

compute explicitly the height Y of the rough model shown 

in Fig. (1).  

3.2. Relationship of the relative height   

 If one selected the linear dimension” Y ”, the wetted 

perimeter P and the water area A of the rough model are 

respectively: 

 
1

12 1P Y   
  

     (18) 

2 1 1
2mYA  

 


 
 

 
  (19) 

 Inserting Eq. (18) and Eq. (19) into Eq. (5), one can 
write: 
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  (20) 

where : 

5

* Q
Q

g J Y

   (21) 

2
1

1z 
 

 
 

    (22) 

 Referring to Eq. (14), Eq. (20) is reduced to: 
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  (23) 

 Eq. (23) is implicit with respect to the variable z. It 

particularly shows that z, and therefore  , depends solely on 

1 and thus of m. From the only known value of m, it is then 

possible to calculate the relative height   of the rough 

model. Some methods for solving the implicit Eq. (23) are 

presented in what follows. 

 The first method consists in applying to Eq. (23) the 

Lagrange's theorem [16] to derive an exact analytical 

expression for z. Before applying this theorem, write Eq. 

(23) as follows: 

 
1/3

1 1z z     (24) 

where: 
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 Eq. (24) is in the following form: 

0
( )z a z     (26) 
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where: 

0 1a   , 1   ,  
1/3

( ) 1z z    

 According to Lagrange’s theorem, the function ( )f z  is 

given in terms of an infinite series as: 

1
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1
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( 1)
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 
 

 
 
 

   (27) 

 The function  is defined as ( 1) !i i    

 According to Eq. (22) one can write: 
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 As a result, we can deduce that: 
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 This then allows us to write that: 
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       (29) 

 Eq. (29) is the exact solution of the parameter  . 
However, its convergence must be studied to answer the 
question at what order i should we truncate the series to 
obtain an acceptable value.  

 The second method we suggest is a numerical method 
which consists in approaching successively the solution of 
Eq. (23). The calculation process is iterative and operates on 
Eq. (24) after selecting a first value of z. Assume that the 
first value of z is 0z . According to Eq. (24), we obtain the 
next values of z such that: 

 0

1/3

1 1 1 zz     

 1

1/3

2 1 1 zz    …and so on. 

 The calculation process stops when 
i

z and
1i

z


are 

sufficiently close. It is obvious that the speed of convergence 

of the described iterative process depends strongly on the 

value of 0z initially selected. We suggest calculating the 

value of 0z instead of choosing it with an arbitrary manner. 

The calculation showed that almost exact value of z is 

obtained, in the worst case, at the end of the eighth step of 

calculating for 
0z such that: 

0

2

2

3

9
z








 
 
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  (30) 

 Remember that  is calculated using Eq. (25) for the 

given value of m. Once the final value of z is calculated, the 

relative height   is derived from Eq. (22). 

 The third method is to apply to the implicit Eq. (24) a 

limited development. The calculation showed that for all 

values  of  , the quantity z  contained in the right 

member of the Eq. (24), is less than unity. This suggests 

applying a limited development whose the most appropriate 

order is 3. Thus, Eq. (24) can be written as: 

 
1/3

2 3
3/2

1 1

5
1 1

3 9 81

z

z z z

z 

  

  

    
 
 
 
 

  (31) 

Eq. (31) can be rewritten as: 

2

3 2

9(9 ) 27
0

5 5
zz



 


     (32) 

 By adopting the following change of variables: 

z X   (33) 

 Eq. (32) becomes: 

2
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3 2

9(9 ) 27
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X X
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 


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 We thus obtain a second order equation whose real 
solution is: 

 2 4 2

3

3
27 729 162 51 3

10

X   


       (35) 

 Taking into account Eq. (22) and Eq. (33), the relative 

height   is expressed as: 

 2 4 2

3

1 3
1 27 729 162 51 3

10

  





        (36) 

 Eq. (36) allows computing the almost exact value of the 

relative height   using the only known value of m.  

 Among the three methods we have just described, only 
the third one seems to be the most appropriate and most 
convenient. 

4. NON-DIMENSIONAL CORRECTION FACTOR OF 
LINEAR DIMENSION 
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 The RMM states that any linear dimension L of a conduit 

and the linear dimension L  of its rough model are related by 

the following equation, applicable to the whole domain of 

the turbulent flow: 

L L  (37) 

where  is a non-dimensional correction factor of linear 
dimension, less than unity, which is governed by the 
following relationship [1, 10] : 

2/5
/ 8.5

1.35 log
4.75

hD

R






  
  

  
  

    (38) 

where R is the Reynolds number in the rough model given 
by: 

4Q
R

P
     (39) 

5. COMPUTATION STEPS OF LINEAR DIMENSIONS 

 To design the studied geometric profile shown in Fig. (1), 
only the following data must be given: 

Q , J, cotg ( )m  ,  and  . Note that no linear 

dimension is required as a given data of the problem. The 

following steps are recommended to compute the three linear 

dimensions of the conduit: 

1. With the known value of m, compute 1 , 2 and  using 

Eq. (9), Eq. (10) and Eq. (25) respectively. 

2. According to Eq. (17), compute the height Y of the rough 

model. 

3. Using Eq. (36), compute the relative height  and deduce 

the linear dimension y according to Eq. (12). 

4. Compute the wetted perimeter P and the water area A of 

the rough model by the use of Eq. (18) and Eq. (19) 

respectively. Deduce the hydraulic diameter 4 /hD A P

and the Reynolds number R  according to Eq. (39). 

5. Using Eq. (38), the non-dimensional correction factor of 

linear dimension  is then worked out. 

6. Finally, the vertical linear dimensions of the conduit are 

given by the fundamental Eq. (36) as: 

Y Y  

y y  

 From geometrical considerations operated on Fig. (1), the 
horizontal linear dimension a is:  

2a my  

6. PRACTICAL EXAMPLE 1 

 Compute the linear dimensions of the pressurized 
rectangular conduit with triangular bottom shown in Fig. (1) 
for the following data: 

3
3.46 /Q m s ,

4
2 10J


  , 

3
10 m 

  

30 ( 1.732050808)m    , 
6 2

10 /m s 
  

 Using Eq. (9), Eq. (10) and Eq. (25), the parameters 
1 , 

2 and  are respectively: 

2
1

2

2 2 1 1

2 1.732050808 2 1 1.732050808 1

6.46410162
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2
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 According to Eq. (17), the height Y of the rough model 
is: 
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 According to Eq. (36), the relative height 
1




is: 

1
0.73877621

y

Y



   

 This leads to: 

2.32866908 0.73877621 1.72036533 my    

 Using Eq. (18) and Eq. (19), the wetted perimeter P and 
the water area A of the rough model are respectively: 
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1
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Thus, the hydraulic diameter 4 /hD A P is: 

4 8.75147464 /14.0575891 2.49017795hD m     

Using Eq. (39), the Reynolds number R is: 

6

4 4 3.46
984521.59

14.0575891 10

Q
R

P 





   

 According to Eq. (38), the non-dimensional correction 
factor of linear dimension  is: 

2/5
/ 8.5
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 The required linear dimensions of the conduit are then: 

0.77300413 2.32866908 1.8Y Y m     

0.77300413 1.72036533

1.32984951 1.33

y y

m
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 
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 
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 This step aims to verify the validity of the calculations. 

To do this, determine from Eq. (5) the energy slope J which 

must be equal to J for Q Q . Hence: 

2

3

4

2

3
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0.00019996 2 10

P
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
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 It is indeed the value of J given in the problem statement. 

7. PRACTICAL EXAMPLE 2 

 This second example is proposed to show that the rough 
model method is also applicable in the turbulent smooth 
regime corresponding to a absolute roughness tending to 
zero. Data, different from those of Example 1, are considered 
in order to check once again the validity of the calculations 
resulting from the advocated method. 

 Compute the linear dimensions of the pressurized 
rectangular conduit with triangular bottom shown in Fig. (1) 
for the following data: 

3
5 /Q m s ,

4
10J


 , 0  , 45 ( 1)m    , 

6 2
10 /m s 

  

1. Using Eq. (9), Eq. (10) and Eq. (25), the parameters 1 , 

2 and  are respectively: 

2 2
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
 

2
3 3

1 1m     

2 2
1 1 1 1 1 1

0.58578644

m m       



 

2. According to Eq. (17), the height Y of the rough model is: 

1/5 1/5
2

1

2

1/5
1/5

2

4

1

128

1 3.82842712 5

128 1 9.81 10

3.94978397

Q
Y

gJ

m













 



  
    

   

  
       

 

3. According to Eq. (36), the relative height 
1




is: 

1
0.79646353

y

Y



   

 This leads to: 

3.94978397 0.79646353 3.14585887 my    

 Using Eq. (18, 19), the wetted perimeter P and the water 
area A of the rough model are respectively: 

 

 

1
1

16.7974005

2 1

3.94978397 0.79646353 3.82842712 12

P Y

m

  
  

 
  

  



 
 

 

2 1 1

2

2

2

1 3.94978397 0.79646353 2 0.79646353

14.9544978

mYA

m

 
 




 

 
 

   



 

 Using Eq. (39), the Reynolds number R is: 

6

4 4 5
1190660.42

16.7974005 10

Q
R

P 





   

4. According to Eq. (38) for 0  , the non-dimensional 

correction factor of linear dimension  is: 

2/5
8.5

1.35 log 0.70102483
R





  
  

    
 

5. The required linear dimensions of the conduit are then: 
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0.70102483 3.94978397 2.769Y Y m   

0.70102483 3.14585887

2.20532518 2.205

y y

m

  

 
 

2 2 1 2.20532518

4.41065035 4.410m m

a my 

 

  

 

6. This step aims to verify the validity of the calculations. To 

do this, determine from Eq. (5) the energy slope J which 

must be equal to J for Q Q . Hence: 

2

3

4

2

3

1 5

128 128 9.81

0.000099997 10

14.0575891

14.9544978

P
J Q

g A






 

 

 

 It is indeed the value of J given in the problem statement. 

8. RESULTS 

 The three basic equations of turbulent flow are easy to 

handle when they are applied to the rough model, 

particularly the Colebrook-White relationship which induces 

a known and constant friction factor. Mathematical 

transformations have made  them explicit and simple. The 

most significant result is the fact that the relative vertical 

height of the rough model depends solely on the known 

parameter m. Moreover, the calculation of the three linear 

dimensions of the studied conduit is not linked to the 

knowledge of one of these. This calculation depends solely 

on the discharge Q, the energy slope J, the side slope m, the 

absolute roughness  and the kinematic viscosity. The 

required linear dimensions of the conduit are obtained by 

multiplying the homologues linear dimensions of the rough 

model by a non-dimensional correction factor.  

CONCLUSION 

 The rough model method (RMM) was successfully 
applied to design a pressurized rectangular shaped conduit 
with triangular bottom. The method was firstly applied to a 
rough model of the same shape characterized by well known 
parameters. This led to the establishment of explicit 
equations relating the characteristics of the flow in the rough 
domain. The explicit form of these equations was made 
possible through mathematical transformations. By 
introducing the non-dimensional correction factor of linear 
dimensions, these equations were secondly used to derive the 
required linear dimensions of the studied conduit. It emerged 
from this study that the design of such a conduit does not 
require any linear dimension as a given data of the problem. 
The problem of the design was completely solved with the 
bare minimum of data measurable in practice. All established 
relationships are valid in the entire domain of the turbulent 
flow. 

 The theoretical development as well as the calculation 
example we proposed show no restriction in the application 

of the rough model method. However, it should be applied to 
other shapes of geometric profiles to observe its scalability 
and performance. Its application to open channels should 
also be investigated to solve the problem of the normal depth 
which remains relevant.  

NOTATION 

A = Water area 

a = Horizontal linear dimension 

Dh = Hydraulic diameter 

f = Friction factor 

g = Acceleration due to gravity 

J = Energy slope 

L = Linear dimension 

m = Side slope 

P = Wetted perimeter 

Q = Discharge 

Q
*
 = Relative conductivity 

R = Reynolds number 

Rh = Hydraulic radius 

y = Vertical linear dimension 

Y = Vertical linear dimension 

 = Absolute roughness 

 = Non-dimensional correction factor 

 = Relative vertical height  

 = kinematic viscosity 
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