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Abstract: A new method is applied to calculate the normal depth in an open channel of parabolic cross section. This is the 

rough model method whose main particularity is to ignore the flow resistance coefficients, such as Chezy’s coefficient 

and manning’s roughness coefficient. The method is applied to a referential rough model, whose friction coefficient is 

constant, which explicitly express the hydraulic and geometric characteristics of the model such as aspect ratio. By means 

of a non-dimensional correction factor, the normal depth is explicitly deduced. The rough model method is applicable to 

the entire domain of turbulent flow.  
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1. INTRODUCTION 

 Normal depth plays a significant role in the design of 

open channels and in the analysis of the non-uniform flow as 

well. Searching for earlier literature, one can find some 

methods of uniform flow computation. For the most part, the 

well known Chezy and Manning resistance equation are 

extensively used. Due to their implicit form, graphical 

methods have been presented in the past for uniform flow 

computation in the common rectangular, trapezoidal, 

triangular and circular cross sections [1-3]. For these, 

explicit solutions for normal depth have been proposed 

afterwards [4, 5]. The most relevant study is certainly that of 

Swamee and Rathie [6], in which exact analytical equations 

for normal depth have been reported for rectangular, 

trapezoidal and circular cross sections. However, the 

solution is given in terms of an unlimited series whose 

application to the use of the engineer is not at all handy. For 

round-bottomed triangular, round-cornered rectangular and 

parabolic cross sections, exact or approximate solutions are 

not yet available. For these sections, graphical methods have 

been proposed by Babaeyan-Koopaei [7] for parabola of 

second degree, using the Manning's resistance equation. For 

parabolic cross section, Achour and Khattaoui [8] derived 

three explicit relations for the aspect ratio, depending on the 

value of the relative conductivity. The proposed relationships 

are valid in a wide practical range of relative conductivity. In 

recent years, graphical methods were replaced by iterative 

methods for all known geometric profiles of channels [9, 

10]. In current methods of calculation, the major problem  
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lies not in their iterative nature but rather in the fact that they 

consider the coefficient of Manning or Chezy as a given data 

of the problem. It is here that lies the real difficulty because 

the question is how to impose these coefficients as they 

depend on the normal depth sought. Even with a lot of 

experience, it is very difficult or impossible to set the value 

of these coefficients in advance, before calculating the 

normal depth. The only practical measurable parameter 

which is related to the internal state of the channel wall is the 

absolute roughness, usually referred to. It is this parameter 

that must be, in principle, a given data of the problem instead 

of Chezy and Manning coefficients. Currently, there is no 

explicit method that considers this parameter. It is in this 

context that this study is proposed, based on a new method 

known as the Rough Model Method (RMM) [11-18]. This 

method does not require Manning’s roughness coefficient or 

Chezy’s coefficient. For the calculation of normal depth in 

parabolic open channel, it requires only measurable 

parameters in practice, namely the discharge Q, the 

longitudinal slope i, the geometric elements of the channel, 

the absolute roughness  and the kinematic viscosity  of the 

flowing liquid. The method is based on geometric and 

hydraulic characteristics of a referential rough model whose 

parameters are well defined. With a non-dimensional 

correction factor of linear dimension, these parameters are 

used to derive those of the studied channel, especially 

normal depth. In the RMM, there is no restriction in the 

involved parameters and the resulting equations are valid in 

the entire domain of turbulent flow, corresponding to 

Reynolds number R  2300 and relative roughness /Dh 

varying in the wide rang [0; 0.05]. A calculation example is 

presented to better understand the calculation procedure and 

to appreciate its simplicity and efficiency. 
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2. BASIC EQUATIONS 

 The study is based on the three turbulent flow equations, 
namely Darcy-Weisbach equation [19], Colebrook-White 
equation [20] and Reynolds number formula. The Darcy-
Weisbach equation gives the longitudinal slope of a conduit 
or channel as follows: 

  

i 
f

D
h

Q
2

2gA
2

  (1) 

where Q is the discharge, g is the acceleration due to gravity, 
A is the wetted area, Dh is the hydraulic diameter and f is the 
friction factor given by the well known Colebrook-White 
formula as: 

1
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where   is the absolute roughness and R is the Reynolds 
number which can be expressed as : 

R 
4Q

P
   (3) 

where   is the kinematic viscosity and P is the wetted 
perimeter. 

3. REFERENTIAL PARABOLIC ROUGH MODEL 

 All geometric and hydraulic characteristics of the rough 

model are distinguished by the symbol " ". Fig. (1) 

compares the geometric and hydraulic characteristics of the 

current channel with those of its rough model. The rough 

model is particularly characterized by  / D
h
 0.037  as the 

arbitrarily assigned relative roughness value, where Dh is the 

hydraulic diameter. The chosen relative roughness value is 

so large that the prevailed flow regime is fully rough. Thus, 

the friction factor is f  1 / 16  according to Eq. 2 for R  R  

tending to infinitely large value. The rough model is also 

characterized by the top width T
m
 T

m
, the height Ym  Ym and 

the longitudinal slope  i  i  (Fig. 1). The discharge 

isQ  Q implying that the normal depth y
n

is such that 

yn  yn and even yn  yn .  

y n

Y

X
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mY
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X
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n ny ym mY Y

 
 a) b) 

Fig. (1). Schematic representation of normal depth in parabolic 

cross section.  

a) Current channel. b) Rough model 

 It has been demonstrated in an earlier study [8] that the 

aspect ratio n of the water area, known also as the non-

dimensional normal depth, is expressed for a parabola of 

second degree as: 

n  y
n
/ B   (4) 

where: 

B  Tm
2
/Ym   (5) 

 B is a known parameter since the geometric elements 

Tm and Ym are given in practice. Considering the fact that 

T
m
 T

m
and Ym  Ym , one can write for the rough model 

B  B according to Eq. (5). Applying Eq. (1) to the rough 

model leads to: 

i 
f

Dh

Q
2

2gA
2

  (6) 

 Bearing in mind that D
h
 4A / P and f  1 / 16 , Eq. (6) can 

be rewritten as: 

i 
1

128g

P

A
3
Q
2   (7) 

 The wetted perimeter P and the water area A  are 
expressed respectively as [8]: 

P 
B

8
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 Inserting Eq. (8) and Eq. (9) into Eq. (7) and rearranging 
leads to: 

Q
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9/2
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where Q
*
is the relative conductivity expressed as: 

Q
*


3 3

64 2giB
5

  (11) 

 All the parameters of Eq. (11) are known, which allows 
determining the value of the relative conductivity Q* . What is 
needed is the computation of the aspect ratio n  using 
Eq.(10) for the given value of Q

*
. However, as one can 

observe, equation (10) is implicit with respect to n . The 
computation involves iterative procedure of graphical 
method. One way to avoid this is to provide an approximate 
relationship for Eq. (10). In an axis logarithmic system, the 
graphical representation of Eq. (10) showed a flat curve. This 
suggests approximating Eq. (10) by the following handy and 
explicit power law: 

n  Q
*   (12) 

 In order to obtain a better accuracy, the curve 
*( )n Q expressed by Eq. (10) has been divided into four 

segments. Each segment was approximated by the power law 

given by Eq. (12). The obtained values of the 

parameters and   of Eq. (12) are circumstantially 

reported in Table 1. Also indicated is the maximum 
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deviation between Eq. (10) and Eq. (12), depending on the 

limitations of
*

Q . As it can be seen, Eq. (12) is quiet 

satisfactory for practical applications.  

4. NON-DIMENSIONAL CORRECTION FACTOR OF 
LINEAR DIMENSION 

 The rough model method states that any linear dimension 
L of a channel and the linear dimension L of its rough model 
are related by the following equation, applicable to the whole 
domain of the turbulent flow: 

L L   (13) 

where  is a non-dimensional correction factor of linear 
dimension, less than unity, which is governed by the 
following relationship [12, 13] : 

2/5
/ 8.5

1.35 log
4.75

hD

R






  
  

  
  

  (14) 

where R is the Reynolds number in the rough model given 
by : 

4Q
R

P
   (15) 

5. COMPUTATION STEPS OF NORMAL DEPTH 

 To compute the normal depth 
n

y in a channel of 
parabolic cross section, the following parameters must be 
given: the discharge Q, the geometric elements mT and mY , 
the longitudinal slope i, the absolute roughness  and the 
kinematic viscosity. All these parameters are measurable in 
practice. The normal depth 

n
y can be computed according to 

the following steps: 

1. Using Eq. (5), compute the parameter B. 

2. According to Eq. (11), compute the relative 

conductivity
*

Q .  

3. Compute the aspect ratio n using Eq. (12). The 

parameters  and  are taken from Table 1, depending on 

the calculated value of
*

Q . 

4. As a result, Eq. (8) and Eq. (9) give the wetted perimeter 

P and the water area A respectively. This allows 

deducing the hydraulic diameter 4 /
h

D A P and 

Reynolds number R by the use of Eq. (15). 

5. Thus, compute the non-dimensional correction factor of 

linear dimension  by applying the explicit Eq. (14). 

6. Assign to the rough model the new linear dimension 

/B B according to Eq. (13) and derive the 

corresponding value of the relative conductivity 
*

Q using 

Eq. (11). 

7. Introducing this value of 
*

Q into Eq. (12), we obtain the 

aspect ratio n in the rough model equal to the aspect 

ratio n in the current channel.  

8. According to Eq. (4), the required normal depth is finally 

as: 
2


n ny B . 

6. EXAMPLE 1 

 Compute the normal depth ny in the parabolic channel 
shown in Fig. (1), for the following data: 

3
5 /Q m s , 5mT m , 2.5mY m , 

3
10


i , 

3
10 m 

 , 

6 2
10 /m s 

 . 

1. According to Eq. (5), the linear dimension B is: 

B  Tm
2
/Ym  5

2
/ 2.5  10m  

2. The relative conductivity Q
*
is then: 

Q
*


3 3

64 2giB
5


3  3

64  2  9.81  10
3
 10

5
 

  0.00916479  

3. According to Eq. (12) and Table 1, the aspect ratio n in 

the rough model is: 

n  Q
*  1.441 0.009164790.264  

  0.41750752  

4. The wetted perimeter P was easily calculated using Eq. 
(10) such that: 

Table 1. Values of  and  for computation of the aspect ratio n by Eq. (12) 

Q
*

 
n    Maximum deviation % 

Q
*
 0.00261  


n
 0.30

 1.366 0.255 0.26 

0.00261  Q
*

 0.0182  
0.30  

n
 0.50

 1.441 0.264 0.15 

0.0182  Q
*

 0.232  
0.50  

n
 1

 1.487 0.272 0.26 

0.232  Q
*

 69.5  
1  

n
 5

 1.507 0.282 0.32 
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P 
B

8
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n
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n

2

 ln 4
n
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n
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 5.67037211m  

 According to Eq. (9), the water area A is: 

A 
2

3
B
2

n

3


2

3
 10

2
 0.41750752

3
 

 4.85178595m
2  

 The hydraulic diameter D
h
 4A / P is  

thus: D
h
 4A / P  4  4.85178595 / 5.67037211  

 3.42255207m  

 Using Eq. (15), the Reynolds number R in the rough 
model is: 

R 
4Q

P


4  5

5.6703721110
6
 3527105.39  

5. Using Eq. (14), the non-dimensional correction factor of 
linear dimension  was easily calculated as: 

  1.35  log
 / D

h

4.75

8.5

R

















2/5

 0.76079518  

6. Assign to the rough model the following new value of 
linear dimension: 

B  B /  10 / 0.76079518  13.1441422m  

 The corresponding value of the relative conductivity Q
*
is 

given by Eq. (11) as: 

Q
*


3 3

64 2giB
5


3  3

64  2  9.81  10
3
 13.1441422

5
 

 0.00462692  

7. Thus, Eq. (12) and Table 1 give the aspect ratio n in the 

current channel as: 

n  n  Q
*  1.441 0.004626920.264  

  0.34857883  

8. According to Eq. (4), the required normal depth is: 

y
n
 Bn

2
 10  0.34857883

2
 1.215m  

9. This step aims to verify the validity of the calculations by 
determining the discharge Q using Chezy’s equation. The 
discharge so calculated should be equal to the discharge 
given in the problem statement. Chezy’s equation 
expresses the discharge Q as: 

Q  CA R
h
i  

 C is the Chezy’s coefficient and Rh is the hydraulic 

radius.  

 According to the rough model method, the coefficient C 
is related to  by the following formula: 

C 
8 2g


5/2

 

 Hence: 

C 
8 2g


5/2


8  2  9.81

0.76079518
5/2

 70.1891711m0.5
/ s The water area A 

is given by Eq. (9) as: 

A 
2

3
B
2n
3 

2

3
 10

2
 0.34857883

3
 

 2.82365594m
2  

 The wetted perimeter P was calculated using Eq. (10) as: 

P 
B

8
4n 1  16n

2

 ln 4n  1  16n
2 





 

 4.40887352m  

 The hydraulic radius Rh  A / P is then: 

Rh  A / P  2.82365594 / 4.40887352

 0.64044839m
 

 Thus, according to Chezy, the discharge Q is: 

Q  CA Rhi  

 70.1891711 2.82365594  0.64044839  10
3  

 5.0156m
3

/ s  

 The discharge so calculated and that given in the problem 
statement are almost equal. The deviation between both is 
about 0.3% only, which clearly indicates the validity of the 
calculations. 

7. EXAMPLE 2 

 The following example shows that the rough model 
method is also applicable in the turbulent smooth regime. 

Compute the normal depth yn in the parabolic channel shown 
in Fig. (1), for the following data: 

Q  4 m
3
/ s ,Tm  6 m , Ym  3 m , i  10

3 ,   0 , 

  10
6
m
2
/ s . 

1. The linear dimension B is: 

B  Tm
2
/Ym  6

2
/ 3  12m  

2. The relative conductivity Q
*
is then: 

Q
*


3 3

64 2giB
5


3  3

64  2  9.81  10
3
 12

5
 

  0.00464793  

3. According to Eq. (12) and Table 1, the aspect ratio n in 
the rough model is: 

n  Q
*  1.441 0.004647930.264  

  0.34899599  
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4. The wetted perimeter P was easily calculated using Eq. 

(10) such that: 

P 
B

8
4

n
1  16

n

2

 ln 4
n
 1  16

n

2 





 

  5.29924099m  

Applying Eq. (9), the water area A is: 

A 
2

3
B
2

n

3


2

3
 12

2
 0.34899599

3  

 4.08067989m
2  

The hydraulic diameter D
h
 4A / P is thus: 

D
h
 4A / P  4  4.08067989 / 5.29924099  

  3.08019952m  

Applying Eq. (15), the Reynolds number R in the rough 
model is: 

R 
4Q

P


4  4

5.29924099 10
6
 3019300.32  

5. Using Eq. (14), the non-dimensional correction factor of 
linear dimension  was easily calculated as: 

  1.35  log
8.5

R














2/5

 0.6801447  

6. Assign to the rough model the following new value of 
linear dimension: 

B  B /  12 / 0.6801447  17.6433043m  

 The corresponding value of the relative conductivity Q* is 
given by Eq. (11) as: 

Q
*


3 3

64 2giB
5


3  3

64  2  9.81  10
3
 17.6433043

5
 

 0.00177322  

7. Thus, Eq. (12) and Table 1 give the aspect ratio n in the 
current channel as: 

n  n  Q
*  1.366  0.001773220.255  

  0.2715721  

8. According to Eq. (4), the required normal depth is: 

y
n
 Bn

2
 12  0.2715721

2
 0.885m  

9. After verification of the calculations according to the step 
9 of example 1, the computed discharge Q by applying 
Chezy’s relationship is:  

Q  4.008m
3 / s  

 The discharge so calculated is almost equal to the 
discharge given in the problem statement, confirming the 
validity of the calculations. 

 

 

CONCLUSION 

 The rough model method was judiciously and 
successfully applied to calculate normal depth in a channel 
of parabolic section. The method is based on practical data, 
easily measurable, and does not take into account neither 
Chezy's coefficient nor Manning's roughness coefficient. 
This is one of the main advantages of the method that makes 
it different from current methods. The rough model method 
states that any linear dimension of a channel is equal to the 
homologous linear dimension of a referential rough model, 
corrected by the effect of a dimensionless factor.  

 The method was applied to a referential rough model 
whose friction coefficient has been arbitrarily chosen as a 
constant. The Darcy-Weisbach equation, applied to this 
model, has led to an implicit expression of the aspect ratio of 
the rough model depending on the relative conductivity. The 
curve of this function has been replaced by four explicit 
equations of power law type, remarkably accurate and very 
handy for the engineer use. Using a non-dimensional 
correction factor of linear dimension, the relationship 
expressing the aspect ratio in the rough model allowed 
deducting the aspect ratio in the current channel and 
therefore the required normal depth.  

NOTATION 

A = Water area 

B = Linear dimension 

C = Chezy’s coefficient 

Dh = Hydraulic diameter 

f = Friction factor 

g = Acceleration due to gravity 

i = Longitudinal slope of the channel 

L = Linear dimension 

P = Wetted perimeter 

Q = Discharge 

Q
*
 = Relative conductivity 

R = Reynolds number 

Rh = Hydraulic radius 

Tm = Top width of the channel 

Ym = Height of the channel  

yn = Normal depth 

 = Absolute roughness 

n = Aspect ratio equal to y
n
/ B  

 = Non-dimensional correction factor 

 = kinematic viscosity 
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