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Abstract: A method to optimize the topology of frame bracing system is presented. Firstly frame is filled by truss-like 

continuum uniformly. The truss-like continuum simulates the distributive bracing system. The frame combined with truss-

like continuum is analyzed by finite element method. The densities and orientations of bracing system at nodes are taken 

as design variables. The distribution field of bracing system is optimized by the method of moving asymptotes (MMA) 

and the method of steepest descent. The frame bracing system is established according to the optimal distribution field of 

bracing system. The natural frequency of optimal braced frame increases to more than two times while material increases 

only 5%. For no intermediate densities being suppressed, there is no numerical instability, such as checkerboard patterns 

and one-node connected hinges. The expression of natural frequency and its sensitivities of truss-like continuum are 

derived. 
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1. INTRODUCTION 

 Frame is used widely in structural engineering. Its later 
stiffness of frame is more important design factor than its 
strength. Especially when frame is acted by wind and 
earthquake, increasing the later stiffness and natural 
frequency of frame become the most important design object 
[1]. 

 To improve structural performance, an effective mean is 
to optimize the sectional sizes of members and the structural 
shapes (the positions of nodes, for example). These 
optimization techniques are termed as size optimization and 
shape optimization, respectively. By these techniques 
structural performance is improved on the condition that the 
structural topology (i.e. how many members in structures 
and where these members are placed) is prescribed. These 
techniques are mature relatively and are applied widely in 
engineering already. Furthermore if structural topology can 
be changed, structural performance may be improved more 
greatly. However how to design structural topology is a 
difficult problem. 

 For a frame, bracing system has significant effect on its 
later stiffness [2-4]. For a complex frame, however, it is 
difficult to optimize the topology of bracing system. 
Generally X brace systems are adopted widely. However 
where and how many bracing members are placed is 
determined intuitively frequently. Fortunately the 
development of theory and method of topology optimization 
provide a powerful tool to overcome this difficulty. 

 Structural topology optimization was presented one 
hundred year ago [5]. The various numerical methods, 
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including homogenization method [6, 7], evolutionary 
structural optimization method [8, 9] and level set method 
[10], etc, have developed rapidly in recent decades. It is 
effective to design the reinforcement material by topology 
optimization method [11, 12]. In these optimization methods, 
isotropic continua are taken as ground structures. Structural 
topology is optimized by forming holes in uniform isotropic 
continua [13]. Furthermore, Mijar and Qing used 
evolutionary structural optimization method to optimize the 
bracing system of frame to minimize structural compliance 
[2, 3]. Lots of elements are deleted in optimization 
procedure. The bracing system is expressed by a series of 
conjoint uniform isotropic elements remaining in structure. 
For this reason, to obtain detail bracing system, more 
elements are used. Therefore more numerical calculation 
work is needed. Furthermore, the numerical instabilities exist 
generally [14]. 

 Michell's work has revealed the fact that topological 
optimal structures are truss-like continua generally [5]. 
Truss-like material model can express the optimal truss-like 
continuum accurately. By truss-like material model, the 
optimization problems for stress, compliance and natural 
frequency were studied [15, 16]. In this paper, the 
optimization method is applied to optimize the frame bracing 
system.  

2. TRUSS-LIKE MATERIAL MODEL 

2.1. Elasticity Matrix  

 To optimize the topology of frame bracing system, the 

frame is filled by truss-like continuum fully, which stands for 

the distribution field of dense bracing system. The 

orientations and densities of members vary over whole 

design domain. To simplify this problem, it is assumed that 

there are two familiar members along with orthotropic 
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orientations at any point. The densities of two familiars 

members are denoted as
  
t
1
,t

2
, respectively. The relation 

between stress and strain is expressed as
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(  b1,2 ), where E is Young's modulus. Therefore the 

elasticity matrix can be written as, 
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describe the isotropic material in the case of t1=t2. If the 
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the elasticity matrix can be written as, 
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Ar is constant matrix, 
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 Frame compounded with truss-like continuum is 

analyzed by finite element method. The densities
 
t

bj
and 

orientations
 


j
of members in truss-like continuum at nodes 

are taken as design variables. According to (3), the elasticity 

matrix at node j is expressed as a function of design 

variables
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 The elasticity matrix at any point in an element is 
calculated by the interpolation of elasticity matrixes (6) at 
nodes belonging to the element, 
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where
  
N

j
(,) is shape function, 

 
, is local coordinates, 

Se is the set of nodes belonging to the element e. Introducing 

(6) into (7) leads the elasticity matrix in the element e, 
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2.2. Stiffness Matrix and Its Sensitivities 

 Introducing (8) into the definition of elementary stiffness 

matrix 
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where  B is geometry matrix, 
 
V

e
is the whole element, 
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independent of design variables. It can be calculated and 

stored before finite element analysis if regular rectangular 

element is used. Summation of (9) over all elements gives 

the global stiffness matrix, 
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where Sj is the set of elements around node j. The second 
equation in (10) comes from the exchange of the first 
summation order. Differentiating (10) with respect to design 
variables gives the sensitivities of stiffness matrix, 
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and, 
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where 
  
g
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j
)  is the derivation of the second equation in (4) 
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3. NATURAL FREQUENCY AND ITS SENSITIVITIES 

 The frequency equation can be expressed as a general 
eigenvalue problem, 

  Mv  Kv / 2
, or   

(K / 2  M)v  0  (14) 

where   and v are the natural frequency and mode of 

vibration, respectively. The natural frequency can be 

calculated by Rayleigh quotient, 
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 For the amplitude of the mode of vibration being 

pointless, the mode v can be set to  v
T
Kv 1. Therefore (15) 

can be written as 

  1/ 2  v
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 To maximize the natural frequency of vibration, deriving 

(16) with respect to design variables 
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 Introducing (11) and (12) into(17), the sensitivities of 
natural frequency are obtained.  

4. OPTIMIZATION PROBLEM 

 With the aid of shape function, the densities of members 

at any point in an element are interpolated by the densities of 

members at nodes belonging to the element
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 The objective function is to maximize the natural 

frequency with prescribed material volume, 
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where n is the number of nodes,  V  is the prescribed material 

volume, 
 
t is the low limit of densities, which is set to a little 

value to avoid the stiffness matrix becoming singular. 

 The densities of members at all nodes are optimized by 
the method of moving asymptotes (MMA) [17]. The 
orientations of members at all nodes are optimized by the 
steepest descent method. Densities and orientations are 
optimized alternatively until the relative change of design 
variables is small enough (1% in this paper). 

5. NUMERICAL EXAMPLES 

 Four-node rectangular elements are used to mesh the 
truss-like continuum. Its volume is kept constant in 
optimization process. Young's modulus is 200GPa. Material 
density is 7850 kg/m

3
. 

 The first example is a 1-bay, 1-story frame shown in  
Fig. (1a). Two concentrated mass of 10

5
 kg locate the two 

corners of frame. Column and beam use I-sections (Chinese 
National Standards GB/T 11263-2005) as shown in Table 1. 
Frame is divided by 20 beam elements; and truss-like 
continuum is meshed by rectangular elements of 8×6, as 
shown in Fig. (1b). The densities and orientations of 
members at nodes are optimized to minimize the structural 
frequency. Frequency increases stably in iteration process as 
shown in Fig. (3). Its natural frequency is increased 
considerably as shown in Table 2. The optimal truss-like 
continuum distribution is shown in Fig. (2a). The 
orientations and lengths of lines in Fig. (2a) stand for the 
orientations and densities of members in truss-like 

  

Fig. (1). 1-bay, 1-story frame (a) Structure (b) Finite element model. 

 

Table 1. Sectional properties of example 1. 

 Section A I 

Column HM194×150×6×9 39.76 2 740 

Beam HN300×150×6.5×9 47.53 7 350 

4m 

3m
 

(b)(a) 
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continuum at nodes, respectively. To make the figure legible, 
some too long lines are cut. According to the optimal bracing 
system distribution field in Fig. (2a), optimal bracing system 
is suggested in Fig. (2b). In order to be fabricated easily, the 
structure in Fig. (2b) is simplified to the structure in Fig. (2c) 
as final optimal braced frame.  

 The second example is a 1-bay, 3-story frame shown in 
Fig. (4a). There are 5 groups of members with I-sections 
(Chinese National Standards GB/T 11263-2005) are used as 
shown in Table 3. Frame is divided by 60 beam elements; 
and truss-like continuum is meshed by rectangular elements 
of 8×18, as shown in Fig. (4b). Frequency increases process 
in iteration is shown in Fig. (2). The optimal bracing system 
is illustrated in Fig. (5a). According to the optimal bracing 
system distribution field in Fig. (5a), optimal bracing system 
is formed in Fig. (5b). In order to be fabricated easily, the 
structure in Fig. (5b) is simplified to the structure in Fig. (5c) 
as final optimal braced frame. 

 The third example is a 2-bay, 6-story frame shown in  

 

Fig. (4). 1-bay, 3-story frame (a) Structure and the number of 

member groups. (b) Calculation model. 

Table 2. Sectional properties of example 2. 

Group Section A I 

1 HM340×250×9×14 101.5 21 700 

2 HM294×200×8×12 73.03 11 400 

3 HM194×150×6×9 39.76 2 740 

4 HN 400×150×8×13 71.12 18 800 

5 HN300×150×6.5×9 47.53 7 350 

A: Cross-sectional area (cm2); I: Moment of inertial (cm4). 
 

Fig. (2). Optimal results (a) Optimal truss-like continuum (b) Optimal bracing systems (c) Modified bracing systems. 

 

Fig. (3). Iteration history. 
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Fig. (6a). There are 14 groups of wide flange sections 
(American Institute of Steel Construction design code) used, 
which are shown in Table 3. Frame is divided by 114 beam 
elements; and truss-like continuum is meshed by 10×18 
rectangular elements as shown in Fig. (6b). The optimal 

truss-like continuum distribution is shown in Fig. (7a), from 
which the optimal bracing system is established in Fig. (7b). 
Furthermore, this braced frame is converted to this one 
shown in Fig. (7c) as final optimal structure. 

Table 3. Sectional properties of example 3. 

Group Section A I 

1 W8×21 39.74 3 134 

2 W8×28 53.23 4 079 

3 W10×26 49.10 5 994 

4 W12×26 49.35 8 491 

5 W14×26 49.61 10 198 

6 W10×19 36.26 4 008 

7 W10×17 32.19 3 409 

8 W8×10 19.10 1 282 

9 W12×19 35.94 5 411 

10 W12×14 26.84 3 688 

11 W14×22 41.87 8 283 

12 W16×26 49.68 12 529 

13 W16×31 58.71 15 609 

14 W24×62 117.42 64 516  

A: Cross-sectional area (cm2); I: Moment of inertial (cm4) 

 

 (a) (b) (c) 

Fig. (5). Optimal results (a) Optimal truss-like continuum. (b) Optimal bracing systems (c) Modified bracing systems. 

Table 4. Natural frequency (rad/s). 

Examples 1 2 3 

Origin Frame 4.44 18.8 40.4 

Braced Frame 8.32 41.2 117 

Braced Frame/Origin Frame 1.87 2.20 2.90 
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 To verify the effect of optimization, the natural 
frequencies of frame with and without bracing systems are 
calculated. The material volumes of braced frame increase 
only 5% in the all examples. However the natural frequency 
of the braced frame is increased considerably as shown in 
Table 4. 

CONCLUSION 

 An optimization method of frame bracing system to 
maximize structural natural frequency is presented. The 
topology of frame bracing system is optimized using truss-
like material model. With 5% material increase, the 
structural natural frequencies are increased greatly. 

 The optimization method based on truss-like continuum 

material model is highly effective. 
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