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Abstract: A new method is presented to compute the normal depth in circular conduit. This is the rough model method 

(RMM). It states that the linear dimension of a conduit or channel is equal to the linear dimension of a referential rough 

model corrected by the effect of a non-dimensional correction factor. The method is based on the Colebrook-White and 

Darcy-Weisbach relationships, applicable to the entire domain of turbulent flow. From the relationship governing the flow 

in the rough model, the normal depth in a circular conduit is explicitly deduced. 
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1. INTRODUCTION 

 The methods of calculating the uniform flow in conduits 
and channels are not numerous. Some of them are graphics 
and other iterative [1-3]. For circular and non-circular 
conduits, explicit calculation methods have been proposed in 
the past and one may quote as an example the method of 
Swamee and Swamee [4]. In this method, the design of non-
circular conduits is based on a similar relation to that 
established for the circular pipe by Swamee and Jain [5]: 
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where D is the vertical dimension of the conduit, 
D

k is a 

constant depending on the shape of the conduit and L is a 

linear dimension whose physical meaning has not been 

specified. Note that relation (1) is only applicable to the 

filling rate of 75%. In Eq. (2), Q is the discharge,  is the 

absolute roughness characterizing the state of the inner wall 

of the conduit, g is the acceleration due to gravity, i is the 

longitudinal slope of the conduit and  is the Kinematic 

viscosity. In the study of Swamee and Swamee [4], an 

explicit approximate relation is proposed for estimating the 

filling rate in circular and non-circular conduits:  
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where /
n

y D  , 
n

y is the normal depth, D is the diameter 

of the conduit, 1nk , 2nk and 3nk  are constant values  

which depend on the shape of the geometric profile of the 

considered conduit. Note that the application of Eq. (3) 

requires the determination of the maximum discharge whose 

expression is established on the basis of statistical analysis of 

several curves. According to the authors, Eq. (3) is 

applicable for filling rate higher than 30% and it causes a 

maximum relative error of about 1%.  

 The last known method for determining normal depth in 

circular conduit was published ten years ago [6]. Using 

Lagrange’s theorem [7], the authors gave expression of the 

filling rate in the form of an infinite series, depending 

however on the coefficients of Chezy and Manning that are 

determined with great difficulty using iterative procedure, 

because these coefficients depend particularly on the filling 

rate . The final result is obtained by truncating the series, 

leading to an approximate filling rate. As we can see below, 

the relationship determining the filling rate  is not easy to 

handle for the use of the engineer. When Chezy’s equation is 

used, filling rate  is given as: 
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where  2
/

D
M Q CD Di and C is Chezy’s coefficient.  

 When Manning’s equation is used, the filling rate  is 
expressed as: 



58    The Open Civil Engineering Journal, 2014, Volume 8 Achour and Sehtal 

 

2/5

3/ 2

3/5 2/51/6

3/ 2

1 1 32
cos

2 2 3

31 2 64
sin ...

4 5 3

D

D

D

N

N

N








  

 

 
 
 

    
    

    

 (5) 

where  8/3
/

D
N nQ D i and n is Manning’s coefficient. 

 In this study, a simple method is proposed for the design 
of conduits and canals as well as the determination of normal 
depth. It is based on fitting a single curve, that of a 
referential rough model having the same shape as of the 
considered conduit. All hydraulic flow characteristics in the 
considered conduit are directly derived from those of the 
referential rough model which are known characteristics. 
The calculation method is presented through practical 
examples applied to the circular conduit. 

2. LOCATION OF THE PROBLEM 

 Normal depth is an important parameter in the design of 
the pipes and channels, as well as in the varied flows 
analysis. In the literature, the normal depth is referred to as

ny . Fig. (1) shows schematically the normal depth in a 
circular conduit of diameter D.  

 

Fig. (1). Definition sketch of normal depth in circular conduit. 

 

 The calculation of normal depth is based primarily on the 
open channel resistance equations. The most commonly used 
equations in practice are namely the Darcy-Weisbach 
relationship, Chezy and Manning equations. The first one 
uses the friction factor as defined by Colebrook-White which 
is implicit. The solution involves many trials and tedious 
computations or laborious graphical procedure. The second 
and the third resistance equations use Chezy and Manning 
roughness coefficients that are not constant but vary 
depending especially on the filling rate and therefore on the 
normal depth. The calculation of these coefficients is done 
with a great difficulty using an inconvenient iterative 
process.  

 The problem is to compute normal depth using 
measurable data in practice such as the discharge Q, the 
slope i of the conduit, the diameter D of the conduit, the 
kinematic viscosity and mainly the absolute roughness  
which reflects the state of the internal wall of the conduit. To 

solve the problem according to these data only, the RMM is 
the most appropriate method. This is what attempt to 
demonstrate the result of this study. 

3. FUNDAMENTAL RELATION OF THE RMM 

 Consider on one hand a circular conduit of diameter D, 

flowing the discharge Q of a fluid with  as the kinematic 

viscosity, under a longitudinal slope i. The inner wall of the 

conduit is characterized by the absolute roughness. On the 

other hand, consider a referential rough model of the same 

shape defined by the diameter D D , the discharge Q Q , 

the kinematic viscosity    and a longitudinal slope i i
. The inner wall of the model is characterized by the relative 

roughness / 0.037
h

D  , where
h

D is the hydraulic 

diameter. Due to the high relative roughness, the flow in the 

model is rough involving a friction factor 1/16f 

according to Colebrook-White relationship [9] for the 

Reynolds number R  . The diameters D and D  are not 

only different but are governed by the inequality D D . 

Between the diameters D and D , one can write the following 

equation:  

D D   (6)  

where  is the non-dimensional correction factor of linear 

dimensions such as 0 1  . Eq. (6) is the fundamental 

relation of the RMM. It can be generalized to all conduits 

and channels, writing that:  

L L   (7)  

where L is any linear dimension, such that the width of a 

rectangular channel, the hydraulic radius, the diameter of a 

circular pipe or the vertical dimension of a noncircular 

closed conduit etc… Eq. (7) can be written as 
2

2 2
L L

and since 
2

L  and 
2

L are respectively proportional to the 

water areas A and A , then we can write : 

2
A A  (8) 

4. NON-DIMENSIONAL CORRECTION FACTOR OF 
LINEAR DIMENSIONS 

 The Colebrook-White relationship [8] is applicable to 

any geometric profile of conduits or channels, since the form 

factor 
,

/
h e h

R R  has a second-order effect [3], where 
,h e

R

is the effective hydraulic radius. Colebrook-White 

relationship [4] can then be written as:  
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where f is the friction factor and R is the Reynolds number. 
According to Eq. (7), one can write the following equations:  

D
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 Taking into account the Darcy-Weisbach relationship [8], 
the longitudinal slope of the conduit can be written as: 
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 Hence: 
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 Inserting equations (8) and (10) into Eq. (13), one can 
deduce: 
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 Combining equations (8), (9), (11) and (14), leads to: 
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 Eq. (15) is implicit towards the correction factor  which 
must then be graphically estimated or computed with the aid 
of an iterative procedure. One way to avoid this is to use the 
following derived explicit relationship, obtained by a 
statistical analysis [10, 11]:  
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 A comparison was made between equations (15) and 

(16), varying / hD from 0 to 0.02. It revealed that 

maximum deviation is less than 0.4% for 2200R 

corresponding to 2300R  . Eq. (16) is applicable in all the 

field of turbulent flow, corresponding to 2300R  and to the 

wide range 0 / 0.05
h

D  . Eq. (16) is applicable to any 

form of conduits and channels. It is valid for any filling rate 

and shape parameter channels. It is more general than is  

Eq. (1).  

5. NORMAL DEPTH COMPUTATION IN CIRCULAR 
CONDUIT USING RMM 

 For the rough model, Chezy’s equation can be written as: 

h
Q Q C A R i   (17) 

 Since 1/16f  , one can write 8 / 8 2C g f g  . 

The wetted area A  is governed by the following relation: 
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 Where /
n

y D  is the filling rate in the rough model 

and 
n

y is the normal depth. Eq. (18) can be written as: 
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 The wetted perimeter P  is given by: 

 1
cos 1 2P D 

   (22) 

or : 

( )P D   (23) 

 The hydraulic radius /
h

R A P is then: 

( )
4

h

D
R    (24)  

 Taking into account Eqs. (19) and (24) and the fact that

8 2C g , Eq. (17) is written as:  

3/25

2 ( ) ( )Q Q giD       
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 The relative conductivity 
* 5

/Q Q giD is then: 

3/2*

2 ( ) ( )Q      
   (26)  

 The relative conductivity 
*

Q in the rough model is thus 

function of the filling rate  . Eq. (26) was plotted in  

Fig. (2). It shows that the relative conductivity in the rough 

 

Fig. (2). Plot of Eq. (26).  

(●) Maximum relative conductivity corresponding to 0.95   
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model begins with an ascending phase, then reaches a 

maximum and finally undergoes a decreasing phase beyond 

this maximum. The calculation showed that the maximum 

relative conductivity is achieved for the filling rate 0.95  . 

 In the wide range 0 15 0 85. .  , corresponding to

0 255 4 433
*

. Q .  , a special study of Eq. (26) has shown 

that the filling rate  could be expressed, with a maximum 

relative deviation less than 0.3% only, by the following 

approximate relation:  

0 5195
0 432

11

* .

. Q

 

 
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 

sin  (27) 

 Consider a referential rough model having a diameter D  

equal to that of the full-model state corresponding to 1  ; 

Eqs. (20) and (21) give respectively   ( )  and

( ) 1   . As a result, Eq. (26) leads to 
*

2Q  . For 

this value, Fig. (2) indicates a filling rate 0 852.  . We 

thus obtain a rough model with a diameter equal to that of 

the full-model state, characterized by the filling rate 

0 852.  . For this filling rate, Eqs. (23) and (24) allow to 

write respectively that:  

2.352P D  (28) 

1.2126
h

D D  (29) 

 The rough full-model diameter is obtained for the relative 
conductivity

*

2Q  , applying what follows:  
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 For the data of the problem, namely Q, D, i,  and ,  

Eqs. (28), (29) and (30) are used to calculate respectively the 

characteristics D , P  and 
h

D of the referential rough model 

and hence the value of the Reynolds number 

4 / ( )R Q P . For the calculated values of 
h

D and R , 

Eq. (16) allows to compute explicitly the non-dimensional 

correction factor of linear dimensions .  

 If we affect to the referential rough model the new linear 

dimension D/ , according to Eq. (6), the filling rate  in 

the rough model would be equal to the filling rate  in the 

considered conduit. This filling rate is given by Eq. (27) for 

the relative conductivity
*

5
/ ( / )Q Q gi D  . The 

required normal depth is then
n

y D .  

 

6. EXAMPLE 1 

 Compute the relative normal depth in circular conduit for 
the following data, using the RMM:  

3
3 /Q m s , 2D m , 

4
5 10i


  , 0  , 

6 2
10 /m s


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 Note that the resistance coefficient C of Chezy or n of 
Manning is not required.  

 Calculate the diameter D  of the full rough model using 
Eq. (30). Hence: 
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 According to Eq. (28), the wetted perimeter P is : 

2.352 2.352 2.475 5.8212P D m    

 The Reynolds number R  is : 

6
4 / ( ) 4 3 / (5.8212 10 2061430.63)R Q P


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1. According to Eq. (16), the non-dimensional correction 
factor of linear dimensions  is then : 
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 Compute the relative conductivity 
*

Q for the new linear 
dimension : 

/ 2 / 0.6884 2.905D D m   .  

 Hence: 
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 According to Eq. (27), the filling rate is thus : 
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2. The required value of the normal depth is then : 

0.605 2 1.21
n

D my      
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3. Check the calculations by determining the discharge Q 

by the use of Eq. (17). For the calculated filling rate 

0.605   , Eqs. (20) and (21) give respectively: 
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 As a result, Eq. (19) gives the wetted area A  as:  

2
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D
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 According to Eq. (24), the hydraulic radius 
h

R is then: 

2.905
( ) 1.1152 0.81

4 4
h
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D
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 Finally, Eq. (17) gives the discharge Q as: 
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 As one can see, the calculated discharge corresponds to 
the discharge given in the problem statement, confirming the 
validity of the calculations.  

 The calculations could be also checked by the general 
relationship of the discharge [12].  

7. EXAMPLE 2 

 Let us propose another example of the normal depth 
calculation in circular conduit for a positive absolute 
roughness, in order to confirm the reliability of the RMM. 
Consider the following data: 

3
1 /Q m s , 1.7D m , 

4
4 10i


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6 2
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1. Using Eq. (30), the diameter D of full rough model is : 
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2. According to Eq. (28), the wetted perimeter P is : 

2.352 2.352 1.668 3.923P D m    

3. Using Eq. (29), the hydraulic diameter 
h

D is then: 

1.2126 1.2126 1.668 2.0226
h

D D m     

4. With the calculated value of P , Reynolds number R  in 
the rough model is: 

6
4 / ( ) 4 1/ (3.923 10 1019610.79)R Q P


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5. Using Eq. (16), the non-dimensional correction factor of 
linear dimension  is as: 
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0.77935  

6. Assign to the rough model the following new linear 
dimension, according to Eq. (6): 

/ 1.7 / 0.77935 2.1813D D m    

 The corresponding value of the relative conductivity is 
then: 
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7. The required value of the filling rate  is given by  
Eq. (27) as: 
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8. Finally, the normal depth is: 

0.506 1.7 0.86
n

D my      

9. Verify the validity of the calculations by determining 

the discharge Q using Eq. (17). Compute first  ( )    

and ( )   using Eqs. (20) and (21) respectively. Hence: 
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   

 1

2 1 2 0.506 0.506 1 0.506
1

cos 1 2 0.506

1.00762



   


 



 


 

 According to Eq. (19), the water area A is: 

2
2

2

2 1813
1 58285 1 00762

4 4

1 8972

.
A . .

. m

D
     



( ) ( )=
 

 According to Eq. (24), the hydraulic radius 
h

R is as: 

2.1813
( ) 1.00762 0.5495

4 4
h

R m
D
      

 Using Eq. (17), the discharge Q is then: 

4

33

8 2 9.81 1.8972 0.5495 4 10

0.9967 1 //

h
Q Q C A R i

m m ss



 

      

 

 

 This second example shows once again that the cal-
culated discharge is equal to the discharge given in the pro-
blem statement, confirming the validity of the calculations. 

8. CONCLUSION 

 A new computation method of normal depth in circular 
conduit is presented. This is the rough model method 
(RMM) which states that any linear dimension of a conduit 
or channel is equal to the linear dimension of a referential 
rough model, corrected by the effect of a dimensionless 
factor. 

 The method is based on Colebrook-White and Darcy-
Weisbach relationships and is, therefore, valid throughout 
the field of turbulent flow. 

 The application of the method for the determination of 
normal depth in a circular conduit is presented. It leads to the 
establishment of an excellent approximate equation 
expressing the filling rate, depending on the relative 
conductivity in the referential rough model. This is 
characterized by a diameter equal to that of the full-model 
state and by a filling rate of 0.852. The obtained relationship 
allows us to deduce explicitly the normal depth in the 
considered circular conduit, using the fundamental 
relationship of the RMM. Practical examples are taken to 
explain the process of calculation. The proposed method 
does not require the coefficients of Chezy and Manning, 
unlike current methods of calculation. The theoretical 
development as well as the calculation examples we 
proposed show no restriction in the application of the rough 
model method. 

 

 

NOTATION 

A = Water area 

C = Chezy’s coefficient 

D = Diameter of the conduit 

Dh = Hydraulic diameter 

f = Friction factor 

g = Acceleration due to gravity 

i = Slope of the conduit 

L = Linear dimension 

P = Wetted perimeter 

Q = Discharge 

Q
*
 = Relative conductivity 

R = Reynolds number 

Rh = Hydraulic radius 

yn = Normal depth 

 = Absolute roughness 

 = Filling rate equal to /
n

y D  

 = Non-dimensional factor 

 = kinematic viscosity 

CONFLICT OF INTEREST 

 The authors confirm that this article content has no 
conflicts of interest.  

ACKNOWLEDGEMENTS 

 None declared. 

REFERENCES 

[1] V.T. Chow, Ed., Open-Channel Hydraulics. McGraw Hill: New 

York, 1973. 

[2] R.H. French, Ed., Open Channel Hydraulics. McGraw Hill: New 

York, 1986. 

[3] R.O. Sinniger and W.H. Hager, Ed., Constructions hydrauliques. 

Presses Polytechniques Romandes: Suisse, 1989. 

[4] P.K. Swamee and N. Swamee, “Design of noncircular sewer 

sections”, J. Hydraulic Res., vol. 46, no. 2, pp. 277-281, 2008. 

[5] P.K. Swamee and A.K. Jain, “Explicit equations for pipe-flow 

problems”, J. Hydraulic Eng., ASCE, vol. 102 (HY5), no. 657-664, 

(HY11), pp. 1707-1709, 1976. 

[6] P.K. Swamee and P.N. Rathie, “Exact solutions for normal depth 

problem”, J. Hydraulic Res., vol. 42, no. 5, pp. 541-547, 2004. 

[7] E.T. Whittaker and G.N. Watson, A Course of Modern Analysis.  

Cambridge University Press, Cambridge: UK, 1965. 

[8] H. Darcy , Sur les recherches expérimentales relatives au  

mouvement des eaux dans les tuyaux, Comptes rendus des séances 

de l’Académie des Sciences, no. 38, pp. 1109-1121, 1854. 

[9] C.F. Colebrook, “Turbulent flow in pipes, with particular reference 

to the transaction region between the smooth and rough pipe laws”, 

J. Inst. Civil Eng., vol. 11, pp. 133-156, 1939. 

[10] B. Achour and A. Bedjaoui, “Turbulent pipe-flow computation 

using the rough model method (RMM)”, J. Civil Eng. Sci., vol. 1, 

no. 1, pp. 36-41, 2012. 

 



The Rough Model Method (RMM) The Open Civil Engineering Journal, 2014, Volume 8    63 

[11] B. Achour, “Design of pressurized vaulted rectangular conduits 

using the rough model method”, Adv. Mat. Res., vol. 779-780, 414-

419, pp.  , 2013.  

[12] B. Achour and A. Bedjaoui, “Discussion. Exact solutions for 

normal depth problem”, J. Hydraulic Res., vol. 44, no. 5, pp. 715-

717, 2006. 
 

Received: January 09, 2014 Revised: March 24, 2014 Accepted: March 25, 2014 
 

© Achour and Sehtal; Licensee Bentham Open. 
 

This is an open access article licensed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/ 

by-nc/3.0/) which permits unrestricted, non-commercial use, distribution and reproduction in any medium, provided the work is properly cited. 

http://www.scientific.net/AMR.779-780.414.pdf
http://www.scientific.net/AMR.779-780.414.pdf

