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Analytic Solutions of Shear Lag on Steel-Concrete Composite T‐girder 
under Simple Bending 
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Abstract: The composite T-girders include concrete flange plates and steel beams, which are connected by shear 
connectors. The longitudinal stress about concrete plate is due to non-uniform distribution on cross section because of the 
shear lag effect. A differential equation of longitudinal forces at transverse section flange and cantilever flange is 
separately established according to the strain compatibility and the force equilibrium conditions about a composite T-
girder. The method of separation of variables is used to solve the differential equation about the simply supported 
composite T-girder. The shear lag coefficient is detrmined by the ratio between stress calculated by this method and stress 
odetrmined by elementary beam theory. An example of such calculation is given to approve its applicability. 
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1. INTRODUCTION 

 The composite T-girders are commonly used in 
construction, because  of the mechanical characteristic of 
steel and concrete, namely the use of concrete compressive 
and steel tensile capacity. It is well known that the uneven 
deformation of the wider T-girder flanges can produce an 
uneven distribution of the longitudinal stresses [1] under 
symmetrical bending. The shear lag effect can result in  
obvious increase  in the longitudinal stress near the edge of 
the flange and cause stress concentration. Due to shear lag 
effects, it can cause stress concentration in structure, leading 
to structural damage [2]. 
 Guo jinqiong, Wei Lina, etal. put forward some practical 
theories of computation and computational methods, such as 
variational methods [3, 4], finite strip method [5, 6] and 
finite element method [6-8]. Lawrence F K, Adam S, Khaled 
M. Sennah et al. researched  shear resistance of the surface 
of the steel-concrete composite beams with cantilever flange 
[9, 10]. 
 Those methods have different characteristics, but  have 
complex  calculation and analysis  to calculate composite 
section. The same method is used to calculate shear lag 
effect of composite box girders in reference [6]. It is also 
applied to calculate shear lag effect of the composite T-
girder. Parameters of a composite T-girder are shown in Fig. 
(1).  

2. DIFFERENTIAL EQUATIONS ABOUT FLANGE 
EQUILIBRIUM 

 As shown in Fig. (1), it is assumed that relative slip 
between the concrete plate and steel girder is not observed   
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Fig. (1). A composite T-girder. 

 
Fig. (2). A flange element of thel T-girder. 
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under symmetrical bending. Both of them bear the applied 
loads. Any element of the flange, as shown in Fig. (2), bears 
a shear flow qe and a normal force nx,i (i=1 represents one 
cantilever flange, i=2 represents the other). It is assumed that 
the shear flow qe is resisted by the composite flange plate 
itself, without considering help from the stiffeners. But both 
the composite flange plate and stiffeners bear the normal 
longitudinal forces. Without special provisions, the subscript 
i has the same meaning as the subscript i of nx,i in the 
followings.  

2.1. Stress and Strain  

 In the elastic range，an equivalent thickness st of steel 
flanges can be obtained according to the Match-plate 
method.Following this, an equivalent thickness t  for the 
composite flange can be obtained according to the equivalent 
conversion principle, where  concrete  slab thickness of 
flange  is converted into steel equivalent thickness. 
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 As shown in Fig. (1), t1 represents the steel plate 
thickness of flange, a and a1 are the spacing of longitudinal 
and transverse stiffener respectively,  As is the transverse 
section area of each longitudinal stiffener, Asx is the 
transverse section area of each transverse stiffener,and tc is 
the thickness of the concrete layer. E and Ec represent the 
Young’s moduli of steel and concrete, respectively. 
 As shown in Fig. (2), the direct strains in the longitudinal 
direction are then given by, 
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 Also, it may be assumed that the transverse direct strain 
in the steel plate and concrete slab are the same so that 
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Where ix ,σ
 

represents the x-direction stress of different 
element,υs andυc express the Poisson’s ratio of the steel and 
concrete respectively; nxs,i and nxc,i are the sections of the 
normal force (nx,i) carried by the steel and concrete 
components respectively, such that:  

 2,1,,, =+= innn ixcixsix  (4) 

 According to equations (3),(4), equation (5) gives 
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 By substitution from equations (3),(5), iy ,ε  can be 
written as 
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 It can be simplified by using an ‘equivalent’ Poisson’s 
ratio (r), with equation(6) given as. 

2,1,
,

, =−=−= ir
Et
n

r ix
s

ix
iy εε  (6) 

Where， ( )
2,1=

+
+

= i
EtEt
EtEt

r
ccsssc

ccsscs

υυ
υυ . 

2.2. Shear Stress and Strain 

 It is assumed that no relative slippage between  the shear 
strains(γi) of elements about steel and concrete slab are the 
same, then 
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Where, Gs and Gc express the shear moduli of the steel and 
concrete, respectively. qs,i and qc,i are the sections of the 
shear flow(qi) carried by the steel and concrete components, 
respectively. The sum of qs,i and qc,i equals the shear 
flow(qi). By substitution, equation (8) becomes 
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 That may be written as: 
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 Where the equivalent thickness of the shear action is 
given by: 
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2.3. Compatibility and Equilibrium Equations 

 As shown in Fig. (2), the equilibrium of the flange 
element in the longitudinal direction is given by 
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 As shown in Fig. (1), the composite flange can be 
regarded as a plane stress problem, by the Hooke’s Law [3]. 
The equation controling the condition of compatibility may 
be written as [11] 
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 Substituting equations (2), (6) and (9) for calculating the 
strains, equation (11) becomes  
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and the shear flow qi may be substituted by the normal force 
nx,i  from equation (10), thus,  
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3. SOLUTION OF DIFFERENTIAL EQUATION 

 For the partial differential equation, the normal force 
nx,i(x,y) can be written as the fourier series by adopting the 
method of separation of variables [8] under the simply 
supported border, such that  
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 Where, L represents the length of the simply supported 
span and Nk,i(y) expresses an amplitude function which 
represents the variation in the cross-section direction of the 
normal force. Where, x represents the distance from the 
origin to the calculated section. k is the series term [11]. 
 By substituting the kth term of the series into equation 
(13), the ordinary differential equation is written as: 
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πξ , the common solution of the 

equation is written as: 
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Where the coefficient Ci,k1 and Ci,k2 are constants obtained  
by  supporting and loading conditions at the longitudinal 
edges of the flange. As shown in Fig. (1), the normal force 
nx,i(x,y) with shear lag has a symmetric distribution in the 
cross section under symmetrical bending. As shown in  
Fig. (2), the coefficient Ci,k2 is zero due to symmetry. The 
constant Ci,k1 can be determined according to the conditions 
of shear flow equivalent and normal force continuity. By 
substituting equation (14) into equation(13), the normal 
longitudinal force can be expressed as: 
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 The normal longitudinal force of the cut-off point about 
two cantilever flange must meet continuous conditions. 
Following this, the normal longitudinal force is written as: 
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 By substituting equation(15) into equation(10), the 
equation of the first-order derivative of y on qi  is given as: 
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integrating the y and noting the value of ξk, the shear flow at 
any point may be written as: 
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 At the center of T-girder flange(where y= c) as shown in 
Fig. (2), the sum of the shear flow on two cantilever flanges 
equals the shear flow (qe) transfered from the web to the 
flange, which can be expressed as: 

( ) ( ) ( )xqxqxq eee 2,1, +=  (18) 

 Where, the shear flow qe,1(x) and qe,2(x) express the shear 
flow transfered from the web to the flange, which can be 
expressed as : 
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 The shear flow (qe) can be approximately obtained from 
the elementary beam theory. It can be written as: 
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 Where, V(x) is the total shear force imposed on the T-
girder cross section at the position x, and I is the inertial 
moment of the cross section, e is the distance from the 
neutral axial to the centroidal axis of the flange. For the 
simply supported span, the shear flow qe(x) can be expressed 
by the fourier series, such that 
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 According to the equations(16)，(19) and (20), the 
constant Ci,k1 can be obtained, such that  
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 By substituting the constant Ci,,k1 into equation (13) and 
equation (14), the normal force nx,i(x,y) may beobtianed. 
Thus, the normal stresses of the steel flange and the concrete 
plate can respectively be given as: 

( ) ( )
2,1

,
, ,

, == i
t
yxn

yx ix
isxσ
( ) ( ) 2,1,, ,, == i

E
Eyxyx
s

c
isxicx σσ  (21) 

 The shear stress of the steel flange and the concrete plate 
can be given as: 
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4. CALCULATION AND CONCLUSION 

 According to the approximate calculation method for 
shear lag effect of composite T-girder, a simple manual or 
the program can obtain the shear lag coefficient of flange. In 
order to analyze the convergency, precision of the method 
and the parametric influence about the shear lag effect of 
composite T-girder should be known. The example of the 
transverse section is shown  in Fig. (3). The area of the 
longitudinal and horizontal stiffeners is 100Square 
millimeters. The depth of concrete flange is 60mm. The 
height of the composite T-girder is 1200mm. The thickness 
of the steel slab is 12mm, and other parameters are illustrated 
in Table 1. According to the ratio of wide-span, the flange 
width c is 600mm、800mm、1200mm and 1800mm. 
 Fig. (4),  shows the relationship between width-span ratio 
, number of terms in series and the stress-ratio of flange  
 
 

about mid-span section, by using the method to calculate the 
shear lag effect, where the vertical coordinate expresses the 
ratio of the longitudinal stress to the  concrete slab based on  
elementary beam theory. 
 As shown in Fig. (4), the convergency is quite fast for a 
uniformly distributed load. In addition, the wide-span ratios 
of T-girder flange have  little influence on the convergency, 
where the convergency of the longitudinal stress in  the 
concrete plate of mid-span is shown for different wide-span 
ratios and the shear lag coefficient(λ) is also defined. Shear 
lag coefficients of  concrete slab increase or reduce with 
respect to its wide-span ratio. 
 Fig. (5), expresses the normal longitudinal distribution of 
concrete plate stress, where the finite elements method 
(FEM) refers to ANSYS program. The calculated values with 
FEM are larger than that with the proposed method because 
of stress concentration at the intersection with the flange of 
the Web. 
 

 
Fig. (3). Cross section of the example. 
 

    
               (a) Stress of cross point between web and flange                                    (b) Stress of lateral point about flange 

Fig. (4). Relationship between width-span ratio ,number of term in series and stress-ratio about cross section of midspan (σ1-analytic 
solutions of this text, σ2-Solutions of primary beam theory). 

Table 1. Parameters of the Example 

Parameter
 

Uniform Load w 
(N/mm) Span L (m) 

Steel Elastic Modulus E 
(N/mm2) 

Concrete Elastic 
Modulus Ec (N/mm2) 

Steel Poisson’s 
Ratio υ 

Concrete Poisson’s 
Ratio υc 

Value 50 10 210000 32500 0.27 0.2 

1
1.01
1.02
1.03
1.04
1.05
1.06
1.07
1.08
1.09
1.1

1 6 12 18 24 30 36 42 50

Number of series used for calculation

σ
1
/
σ
2

2C/L=0.12

2C/L=0.16

2C/L=0.24

2C/L=0.36

0.93

0.95

0.97

0.99

1.01

1.03

1.05

1.07

1 6 12 18 24 30 36 42 50

Number of series used for calculation

σ
1
/
σ
2

2C/L=0.12

2C/L=0.16

2C/L=0.24

2C/L=0.36
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Fig. (5). Transverse distribution of concrete plate stress 
about mid-span. 

CONCLUSION 

 The proposed method for solving the shear lag effect of 
the composite T-girders has fast convergency from simple 
calculations. The precision of result is  sufficient for 
engineering.This has great effect on the shear lag effect of 
the composite T-girder. And the shear lag coefficient (λ) 
increases or decreases with the change in the wide-span 
ratios. Thus, more attention should be paid  to the wider T-
girders. The method can also be applied for multi-span 
girders which may be divided into the simply supported and 
cantilevered girders . 
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