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Abstract: In the literature, there is no explicit method for calculating the resistance coefficient of Chezy, especially for a 
circular conduit. Existing relationships are either implicit or do not take into account all parameters influencing the flow 
such as kinematic viscosity or the slope of the conduit. In many practical cases, one affects arbitrarily a constant value for 
Chezy’s coefficient. It is a physically unjustified approach, because Chezy’s coefficient varies with flow parameters, es-
pecially the filling rate of the conduit and the absolute roughness. In this paper, simple and explicit relationships are pre-
sented for the calculation of Chezy’s resistance coefficient in a circular conduit. These relationships have been established 
based on the rough model method. The Chezy’s resistance coefficient is expressed in terms of known hydraulic parame-
ters of the flow in a referential rough model. For fast calculation of Chezy’s coefficient, the simplified method is the most 
appropriate since it requires only four parameters which are the discharge, the absolute roughness, the slope and the kine-
matic viscosity. The study also shows that the Chezy’s resistance coefficient reaches a maximum whose expression is well 
defined. Some examples are presented showing how to calculate Chezy's coefficient in a circular conduit with a minimum 
practical data. 
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1. INTRODUCTION 

Referring to the literature, we can see that few formulae 
exist for expressing Chezy’s resistance coefficient C. The 
most frequently cited are the old formulae of Guanguillet-
Kutter [1], Bazin [2] and Powell [3]. These relationships are 
well summarized and discussed by Chow [4].  

The Guanguillet-Kutter formula expresses C in terms of 
the hydraulic radius 

 
R

h
, the coefficient of roughness n 

known as Kutter’s n and the slope S. In English units, this 
formula is: 
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This relationship does not contain a term relating to the 
kinematic viscosity. Thus, it can not be applied to the entire 
domain of turbulent flow. Its application seems to be re-
stricted to the rough domain for which the kinematic viscos-
ity has no effect. 

Bazin formula expresses the coefficient C as a  
function of hydraulic radius 

 
R

h
, but not of the slope S. This 

formula is: 
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Where m is a coefficient of roughness whose values are 
given by a table as a function of the type of the material 
forming the channel or the conduit. As for the Guanguillet-
Kutter formula, Bazin formula contains no terms of kine-
matic viscosity. It does not therefore apply to the whole do-
main of turbulent flow. 

The Powell formula is more complete as it contains the 
hydraulic radius 

 
R

h
, the absolute roughness ε and the Rey-

nolds number Re. However, this formula is implicit, express-
ing C as: 
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According to this relationship, C depends especially on 
the Reynolds number Re and therefore on the kinematic vis-
cosity ν. In this relation, there is no term that expresses the 
influence of the slope S on the coefficient C. Its application 
seems to be suitable for the entire domain of turbulent flow. 
It is interesting to note that Powell formula contains the ab-
solute roughness ε which is a measurable parameter in prac-
tice. To determine the coefficient C by the Powell formula, it 
is necessary to use a trial-and-error procedure. 

More recently, Swamee and Rathie [5] have attempted to 
propose a general relationship for Chezy’s coefficient C, 
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applicable in the entire domain of turbulent flow and for all 
shapes of channels and conduits. However, this relationship 
is implicit, requiring also a trial-and-error procedure espe-
cially when the linear dimension of the channel or conduit is 
not given, or when it comes to compute the normal depth of 
the flow. Swamee and Rathie suggested for C a logarithmic 
formula as: 
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Apart from its implicit form, this relationship has the ad-
vantage of being very complete. All the flow parameters are 
included in this relationship. 

According to the literature, several tests were performed 
on corrugated pipes or large scale roughness in channels of 
non circular cross section that have not led to a convincing 
formula for Chezy’s coefficient.  

Among these studies, we can mention those of Streeter 
[6], Ead and al. [7], Pyle and Novak [8], Marone [9], Perry 
and al. [10], Naot and al. [11]. More recently, Giustolisi [12] 
used a genetic programming to determine Chezy’s resistance 
coefficient for full circular corrugated channels. For com-
mercial pipes or artificial channels, the literature does not 
indicate specific studies. That is why this article is proposed 
which aims to establish simple relationships for calculating 
Chezy’s coefficient based on practical data. The calculation 
approach is based on the rough model method (RMM) that 
has been proven in the recent past by contributing success-
fully to the design of conduits and channels and to the calcu-
lation of normal depth [13-25]. Two explicit methods of cal-
culating Chezy’s coefficient are proposed. The first method 
considers the filling rate of the conduit, while the second one 
is more simplified. It takes no account of the filling rate of 
the conduit or its diameter. Both methods give similar re-
sults. In this article, examples are provided to better appreci-
ate the ease of the method and calculation. 

2. HYDRAULIC PROPERTIES 

The characteristics of the flow in a circular conduit par-
tially occupied (Fig. 1) are, in particular: 

Fig. (1). Flow in a circular conduit. 

1. The wetted area: 
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D

2
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It thus appears that the wetted area is depending on the 
diameter D of the conduit and the filling rate 

  
! = y

n
/ D , 

where 
 
y

n
 is the normal depth. 

Eq. (5) can be written as: 

  

A =
D

2

4

! (")# (")              (6)  

where: 
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1# 2"( )             (7) 
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For a circular conduit completely filled, corresponding to 

 
! = 1 , one can deduce from Eq. (7) and Eq. (8) respectively 
that ! ("=1)=#  and 

 
! (" = 1)=1 . 

2. The Wetted perimeter 

  
P = D cos

!1

1! 2"( )              (9) 

This can be written simply as: 

  P = D! (")              (10) 

3. The hydraulic radius 
  
R

h
= A / P  is thus: 

  
R

h
=

D

4
! (")             (11) 

3. GENERAL RELATIONSHIP OF CHEZY’S RESIS-
TANCE COEFFICIENT 

Chezy’s relation gives the discharge Q as: 

 
Q = CA R

h
S             (12) 

To highlight the variation of Chezy’s coefficient based 
on all parameters governing the flow, Achour and Bedjaoui 
formula [23] is very useful. This relationship, applicable to 
all geometric profiles, was established in the whole domain 
of turbulent flow encompassing smooth, transition and rough 
regimes. According to Achour and Bedjaoui [23], the dis-
charge Q is given by the following formula: 
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where S is the slope of the conduit, Re is a Reynolds number, 
ε is the absolute roughness and g is the acceleration due to 
gravity. The Reynolds number Re is governed by the follow-
ing equation: 

  
R

e
= 32 2

g S R
h
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where ν is the kinematic viscosity. 

D

y n
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Inserting Eq. (11) into Eq. (14), leads to: 
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For a circular conduit completely filled, the hydraulic ra-
dius is 

  
R

h
= D / 4 . Thus, Eq. (14) becomes: 
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The subscript ” f “ refers to the full state of the conduit. 
Taking into account Eq. (16), Eq. (15) can be rewritten as: 
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Comparing Eq. (12) and Eq. (13), it is obvious that 
Chezy’s coefficient is such that: 
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or, in dimensionless form : 
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Inserting Eq. (11) and Eq. (17) into Eq. (19) leads to: 
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It thus appears that C depends on the relative roughness 

 ! / D , the filling rate !  and the Reynolds number 
 
R

e f
. 

When these parameters are given, relation (20) allows the 
explicit determination of the coefficient C. However, when it 
comes to design the conduit, D is not a given data and only 
Q, η, S, ε and ν are the known parameters. In this case, Eq. 
(20) does not allow determining explicitly the coefficient C. 
However, this problem can be solved using the rough model 
method (RMM). 

4. COMPUTATION OF CHEZY’S RESISTANCE CO-
EFFICIENT  

4.1. The Rough Model Method 

The rough model is a circular conduit of diameter  D  
greater than D, in which the flow is characterized by a fric-

tion factor 
  f = 1 / 16 , arbitrarily chosen. This high friction 

factor implies that the flow in the model is rough. In the 
rough model, the discharge is Q, the slope is S, the kinematic 
viscosity is ν, and the filling rate is ! . Taking into account 
that Chezy’s resistance coefficient in the rough model 

is
  C = 8g / f , one may write: 

  
C = 8 2g =constant           (21) 

According to the RMM [13, 24, 25], D and D are related 
by the following equation: 

 
D = !D               (22) 

where ! is a non-dimensional correction factor of linear 
dimension, less than unity. It was demonstrated that ! can 
be written as: 
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where 
 
R

h
and 

 
R

e
are respectively the hydraulic radius and 

the Reynolds number in the rough model. The Chezy’s resis-
tance coefficient C and the friction factor f are 

as
  C = 8g / f . As a result, Eq. (23) leads to: 

  

C =
8 2g

!
5 / 2

             (25) 

which can be rewritten as: 
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C

!
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              (26) 

Inserting Eq. (11) and Eq. (17) into Eq. (24), leads to: 
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Combining Eq. (25) and Eq. (27), one can write: 
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The Reynolds number 
 
R

e f
is given by Eq. (16) as: 

  
R

e f
= 4 2

g S D
3

!
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Eq. (28) will be used when the diameter D of the conduit 
is not a given data of the problem. The coefficient C is ex-
plicitly calculated provided the discharge Q, the slope S, the 
absolute roughness ε and the filling rate η are given. To ex-

press the diameter  D , apply Chezy’s relation to the rough 
model. Hence: 
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Q = C A R

h
S             (30) 

Taking into account Eq. (6), Eq. (11) and Eq. (21), Eq. 
(30) leads to: 
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Eq. (31) permits a direct determination of the diameter 

 D , since Q, S, !  and g are the known parameters of the 
problem. Thus, all relationships are established for the ex-
plicit determination of the Chezy’s coefficient C, through the 
following steps provided Q, S, ! , g and !  are given: 

1. For the given value of the filling rate ! , compute 
( )! " and ( )! " according to Eq. (7) and Eq. (8) respec-

tively. 

2. For the given values of Q, S, ! and g, compute the di-

ameter D of the rough model by applying Eq. (31). 

3. For the given values of D , S, g and! , Eq. (29) gives the 

Reynolds number e fR . 

4. Finally, using Eq. (28), Chezy’s resistance coefficient C 

is worked out for the known values of ! , ε, D , 

e fR and g.  

4.2. Example 1 

For the following data, compute Chezy’s resistance coef-
ficient: 

3

0 987Q . m / s= , 4

3 10S
!

= " , 4

10 m!
"

= , 0 6.! = , 
6 2

10 m / s!
"

= . 

1.  According to Eq. (7) and Eq. (8), ( )! " and ( )! " are 
respectively: 
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2. In accordance with the relationship (31), the diameter 

D of the rough model is: 

  

D = 2 ! (")#
$

%
&
' 0.4

( (")[ ]
' 0.6 Q

g S

)

*
++

,

-
..

0,4

 

 
= 2 !1.77215425
"
#

$
%

& 0,4

!1.110576819
& 0.6  

  

!
0.987

9.81! 3!10
"4

#

$
%

&

'
(

0.4
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3. Applying Eq. (29), the Reynolds number 
 
R

e f
is then : 

  
R
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  = 917317.5  

4. Finally, according to Eq. (28), the Chezy’s resistance 
coefficient C is: 
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= 79.79486326 m

0.5

/ s ! 79.8 m
0.5

/ s  

4.3. Simplified Method 

In what follows, a simplified method is proposed for fast 
calculation of Chezy’s coefficient C with a reduced number 
of data. Neither the diameter D of the conduit, nor the filling 
rate ! is required. Only four parameters are needed to evalu-
ate Chezy’s coefficient namely, the discharge Q, the slope S, 
the absolute roughness ε and the kinematic viscosityν. All 
these parameters are easily measurable in practice. This sim-
plified method, also based on the theory of the rough model, 
causes a maximum relative deviation of about 1.25% com-
pared to the method described in section 4.1. This relative 
deviation is less than the relative error with which the abso-

lute roughness is measured in practice. Assuming ! " ! and 
applying Eq. (31) for the rough model leads to: 

  
Q

*
= 2! (") #(")$

%
&
'

3/ 2

          (32) 

Where *
Q is the relative conductivity expressed as: 

  Q
*

= Q / gS D
5

           (33) 
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Consider a referential rough model having a diameter D  

equal to that of the full-model state corresponding to 1! = ; 

Eq. (7) and Eq. (8) give respectively ! (") = #  and 

 ! (") = 1 . As a result, Eq. (32) leads to 
  Q

*

= ! 2 . For this 
value of the relative conductivity, Eq. (32) indicates a second 

value of the filling rate equal to 
  
! " 0.852 . We thus obtain a 

rough model with a diameter equal to that of the full-model 

state, characterized by the filling rate 
  
! " 0.852 .  

Consequently, the wetted perimeter P and the hydraulic 
radius 

h
R are given by Eq. (9) and Eq. (11) respectively as: 

  P = 2.352D              (34) 

  
R

h
= 0.3031D             (35) 

The diameter D  of the full rough model is obtained for 

the relative conductivity 
  Q

*

= ! 2 , implying what follows:  
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The calculation of Chezy’s coefficient is readily carried 
out using the following steps: 

1. Compute the diameter D of the full model using Eq. 
(36). 

2. Compute then the wetted perimeter P and the hydrau-
lic radius 

h
R by the use of Eq. (34) and Eq. (35) respec-

tively. 

3. The Reynolds number 
  
R

e
= 4Q / (P! ) in the rough 

model is then worked out. 

4. With the computed values of 
h
R and 

e
R , the non-

dimensional correction factor ψ is explicitly determined us-
ing Eq. (24). 

5. Finally, Chezy’s coefficient C is directly deduced from 
Eq. (25).  

4.4. Example 2 

Let us consider the data of example 1 to compute 
Chezy’s resistance coefficient using the simplified method. 

  Q = 0.987 m
3

/ s , 4

3 10S
!

= " , 4

10 m!
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= , 6 2

10 m / s!
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= . 

1. According to Eq. (36), the diameter D of the full 
rough model is: 
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= 1.75753046m  

2. Using Eq. (34) and Eq. (35), the wetted perimeter  P and 

the hydraulic radius 
h
R are respectively: 

  P = 2.352D = 2.352 !1.75753046 = 4.13371164m  

  
R

h
= 0.3031D = 0.3031!1.75753046 = 0.53270748m  

3. The Reynolds number 
 
R

e
in the rough model is: 

  
R

e
= 4Q / (P! ) = 4 " 0.987 / (4.13371164 "10

#6
)  

 = 955073.876  

4. According to Eq. (24), the non-dimensional correction 
factor ψ is then: 
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  = 0.72531217  
5. Using Eq. (25), the required value of Chezy’s coeffi-

cient is: 

  

C =
8 2g

!
5 / 2

=
8 " 2 " 9.81

0.72531217
5 / 2

= 79.1 m
0.5

/ s  

Thus, comparing this result with that obtained in example 
1, we can observe that the relative deviation is less than 
0.9% only. 

5. MAXIMUM OF CHEZY’S COEFFICIENT 

5.1. General Relationship 

According to Eq. (20), the Chezy’s resistance coefficient 
C depends on three dimensionless variables namely, the rela-
tive roughness / D! , the filling rate !  of the conduit and 

the Reynolds number e fR . Its graphical representation is not 
easy, but it can be shown, as an indication, its variation for a 
fixed value of the relative roughness / D! . This has been 
performed for different values of / D! and for Reynolds 

number e fR varying between 4

10 and  10
7 .  

Among all the obtained graphs, those of Figs. (1 and 2) 
are representative. Fig. (2) translates the variation of 

  C / g versus the filling rate !  and the Reynolds number 

e fR , for the value   ! / D = 0  corresponding to a smooth 
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inner wall of the conduit. Fig. (3) shows the variation of 

/C g  versus the filling rate ! and the Reynolds number 

 
R

e f
, for the value 0 05/ D .! = corresponding to a state of 

the rough inner wall of the conduit. The chosen values of the 
relative roughness D/!  correspond in fact to the extreme 
values of the Moody diagram. 

Fig. (2) clearly shows that, for a given value of the Rey-

nolds number e fR , C / g increases with the increase of 
the filling rate !  up to a maximum value represented by the 
full sign on the figure. Beyond this maximum value, 

C / g  decreases with the increase of the filling rate ! and 
the decrease continues until the full state of the conduit cor-
responding to 1.! =  

It should also be noted that, whatever the value of e fR , 

the change in C / g according to ! is carried out rapidly 
at first, and undergoes a slight variation in a second time. 

The rapid variation of C / g is observed for a narrow 
range of ! that can be defined as 

  
0 ! " ! 0.2 . Beyond the 

value 0 2.! = , C / g undergoes a very slow change in a 

wide range of !  independently of the value of the Reynolds 

number e fR . This state of change can also be seen in Fig. 
(2). It also indicates that for the high chosen roughness value 

( 0 05/ D .! = ), the variation curves of C / g versus ! are 

very close to each other and merge for the values 5

10e fR > . 

This highlights the rough state of the flow, where C / g is 

almost independent of the Reynolds number e fR and de-

pends solely on the value of the filling rate !  of the conduit.  

The calculation reveals that Chezy’s coefficient is the 
same for the particular values 0.5! = and 1! = . In the range 
0.5 1!" " , there are two normal depths for the same value 
of C which is however very close to the maximum value 

 
C
max.

due to the low variation of the curve. 

The most significant result obtained when plotting the 

variation of C / g  as a function of !  and the Reynolds 

number e fR , lies in the fact that the maximum value is 
achieved for the filling rate 0 8128.! " , whatever the value 
of the relative roughness / D! and that of the Reynolds 
number e fR . In other words, the maximum value of 

 

Fig. (2). Variation of 
 
C / g versus !  and 

 
R

e f
according to Eq. (20), for   ! / D = 0 . (●) Maximum value 

 
C
max.

/ g  obtained 

for 0 8128.! " . 

Fig. (3). Variation of 
 
C / g  versus !  and 

 
R

e f
 according to Eq. (20), for   ! / D = 0.05 . (●) Maximum value 

 
C
max.

/ g  obtained for 

  
! " 0.8128 . 
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C / g , and thus 
max.
C , is achieved at normal 

depth
  
y

n
! 0,813D .  

For 0 8128,! = , the function ! (") defined by Eq. (8) 
takes the following value: 

 

! (") = 1#
2 $ 1# 2 $ 0.8128( ) $ 0.8128 $ 1# 0.8128( )

cos
#1

1# 2 $ 0.8128( )
 

1.217233628 1.21723= !  

Inserting this value in Eq. (20), leads to: 

  

C
max.

g

= !4 2 log
" / D

4.504

+
7.476

R
e f

#

$
%%

&

'
((       (37) 

or: 

  

C
max.

= !4 2g log
" / D

4.504

+
7.476

R
e f

#

$
%%

&

'
((       (38) 

when / D!  and e fR are the known parameters of the prob-
lem, Eq. (38) permits a direct determination of the maximum 
Chezy’s resistance coefficient. When the diameter D of the 
conduit is not given, the determination of the maximum of 
Chezy’s resistance coefficient is possible by the use of Eq. 
(28), in which ϕ(η) =1.217233628. Hence:  

  

C
max.

= !5.343 g log
" / D

5.782

+
6.329

R
e f

#

$

%
%

&

'

(
(

     (39) 

According to Eq. (39), the maximum of Chezy’s resis-
tance coefficient 

 
C
max.

is related to the known parameters of 
the flow in the rough model, which can be then calculated in 
a simple manner even if the conduit diameter D is not given. 
The following examples show the steps for calculating the 
maximum of Chezy’s resistance coefficient. 

5.2. Example 3 

Compute the maximum value of Chezy’s coefficient for 
the following data: 

1.5D m= ; 4

10 m!
"

= ; 4
3 10S

!
= " ; 6 2

10 /m s!
"

=  

1. According to Eq. (16), the Reynolds number 
feR for 

the full state of the conduit is then: 

  
R

e f
= 4 2

g S D
3

!
= 4 " 2 "

9.81" 3"10
#4
"1.5

3

10
#6

563776.551=  

2. Finally, applying Eq. (38), one may obtain: 

  

C
max.

= !4 2g log
" / D

4.504

+
7.476

R
e f

#

$
%%

&

'
((  

  

!4 " 2 " 9.81" log
10

!4
/ 1.5

4.504

+
7.476

563776.551

#

$
%

&

'
(  

0.5
80.65 /m s=  

5.3. Example 4 

Compute the maximum value of Chezy’s resistance coef-
ficient in a circular conduit for the following data: 

3

0 942Q . m / s= , 4

4 10S
!

= " , 0 65.! = , 4

10 m!
"

= , 
6 2

10 m / s!
"

= . 

1. According to Eq. (7) and Eq. (8), ( )! " and ( )! " are 
respectively : 

( ) ( )1 1
( ) cos 1 2 cos 1 2 0.65! " "

# #
= # = # $  

1.87548898=  

 

! (") = 1#
2 1# 2"( ) " 1#"( )

cos
#1

1# 2"( )
 

 

= 1!
2 " 1! 2 " 0.65( ) " 0.65" 1! 0.65( )

cos
!1

1! 2 " 0.65( )
 

1.15259048=  

2. Eq. (31) gives the diameter D of the rough model as: 

  

D = 2! (")#
$

%
&

' 0.4

((")#$ %&
' 0.6 Q

g S

)

*
+
+

,

-
.
.

0.4

 

 
= 2 !1.87548898
"
#

$
%

& 0.4

!1.15259048
& 0.6  

  

!
0.942

9.81! 4 !10
"4

#

$
%

&

'
(

0.4

= 1.838305722 m  

3. According to Eq. (29), the Reynolds number e fR for the 
full state of the rough model is then : 

  
R

e f
= 4 2

g S D
3

!
 

  

= 4 ! 2 !
9.81! 4 !10

" 4

!1.838305722
3

10
"6

 

883214 31.=  
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4. As a result, Eq. (39) leads to: 

  

C
max.

= !5.343 g log
" / D

5.782

+
6.329

R
e f

#

$

%
%

&

'

(
(

 

  

= !5.343 " 9.81 " log
10

! 4

/ 1.838305722

5.782

+
6.329

883214.31

#

$
%

&

'
(  

0 5

80
.

m / s=  

6. CONCLUSION 

Using the general discharge relationship, the expression 
of Chezy’s coefficient C was established for a circular con-
duit. The obtained expression clearly showed that C depends 
on the relative roughness ε/D, the filling rate η of the conduit 
and the Reynolds number Ref characterizing the full state of 
the flow. This in turn depends on the slope S, the diameter D 
of the conduit and the kinematic viscosityν. All parameters 
influencing the flow are represented in the expression of C, 
unlike current relationships. When all these parameters are 
given, the resulting expression is used to calculate explicitly 
the required value of C. When the diameter D of the conduit 
is not a given data of the problem, the explicit calculation of 
C is still possible through the use of the rough model 
method. C is then expressed as a function of the known pa-
rameters of the flow in the rough model. In this case, the 
calculation of C requires the discharge Q, the slope S, the 
absolute roughness ε, the filling rate η and the kinematic 
viscosity ν. When the user does not have all the data of the 
problem, the explicit calculation of C is still possible thanks 
to the simplified method that was clearly described. This 
method uses the minimum measurable data in practice which 
are the discharge Q, the slope S, the absolute roughness ε and 
kinematic viscosityν. This simplified method gives very sat-
isfactory results.  

The paper was completed by the particular study of the 
coefficient C. The graphical representation showed a rapid 
increase in the range 

  
0 < ! " 0.2 . It also showed a slight 

increase in C beyond 0 2.! =  and then reached a maximum 
at the filling rate η = 0.8128. C then undergoes a slight dimi-
nution to the full state of the conduit corresponding to 

 
! = 1 .  

ABBREVIATIONS 

A  =  Water area 

C  =  Chezy’s coefficient 

D  =  Diameter of the conduit 

D  =  Diameter of the rough model 

Dh  =  Hydraulic diameter 

f  =  Friction factor 

g  =  Acceleration due to gravity 

S  = Slope of the conduit 

P  =  Wetted perimeter 

Q  =  Discharge 

Q*  =  Relative conductivity 

Re  =  Reynolds number 

Ref =  Reynolds number at the full state of the conduit 

Rh  =  Hydraulic radius 

yn  =  Normal depth 

ε  =  Absolute roughness 

η  =  Filling rate equal to /
n
y D  

ψ  =  Non-dimensional correction factor 

ν  =  kinematic viscosity 
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