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Abstract: This study established the fuzzy logic modeling of the stochastic finite element method based on the first-order 
approximation theorem. Fuzzy mathematical models of safety repertories were incorporated into the stochastic finite 
element method to analyze the stability of embankments and foundations in order to describe the fuzzy failure procedure 
for the random safety performance function. The fuzzy models were developed with membership functions with half 
depressed gamma distribution, half depressed normal distribution, and half depressed echelon distribution. The result 
shows that the middle region of the dike is the principal zone of concentrated failure due to local fractures. There is also 
some local shear failure on the dike crust. This study provides a referential method for solving complex multi-uncertainty 
problems in engineering safety analysis. 
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1. INTRODUCTION 

 Stability research on geo-structures, which has undergone 
a historical progression from the safety factor K analysis 
phase to the reliability JC application phase, has now entered 
a hybrid theoretical research period (Yang and Zhao 1999; 
Lü and Feng 1997) [1-2] in which probabilistic theorems and 
fuzzy mathematics are introduced into general numerical 
algorithms. Chinese scholars such as Chen and Liu (1990) 
[3] and Wang and Chen (1996) [4] offer some original 
achievements in this area. Though there is an essential 
difference between fuzziness and randomness of engineering 
phenomena, the fuzziness and randomness both belong to 
generalized uncertainty and infiltrate each other. According 
to the definition of the probability theory, random 
phenomena and their probability might be deterministic or 
fuzzy. Thus, fuzzy probability is formed. Based on these 
facts, geo-engineering subjects should be investigated 
comprehensively with fuzzy mathematical theory and the 
probabilistic analytical theorem.  
 Safety of structures is predominated by generalized 
loading and resistance. Therefore, generalized safety 
characteristics of structures can be simulated from dual 
perspectives. One is the fuzziness of structure strength and 
loading, which can be studied with the definition of relevant 
fuzzy membership function, and the other is fuzzy deduction 
of structure working behavior, which, instead of arbitrary 
subjectivities, is derived from the fact that work behavior of 
structures often shows intrinsic fuzzy characteristics in a 
state between safety and failure. The fuzzy characteristics 
can be simulated with fuzzy numerical techniques, i.e., 
softening techniques. With fuzzy softening techniques, the  
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work behavior of structures is translated as a fuzzy event 
expressed by a generalized membership function M that is a 
fuzzy subset submitting to state space of structures. In terms 
of deduction of structures’ working behavior, there are two 
approaches for practical engineering: the fuzzy definition of 
the safety margin and the fuzzy definition of the safety ratio. 
In this study, the fuzzy processing of embankment working 
behavior is carried out with first-order stochastic 
approximation and the harmonious finite element (HFE) 
theorem, by which numerical simulation of fuzzy-stochastic 
uncertainties of the embankment system of the Yangtze 
River in the southern Jingzhou zone of China is realized. 
 The theoretical model described here has been applied to 
the calculation of fuzzy random generalized reliability of the 
main embankment of the Yangtze River in the southern 
Jingzhou zone of China. The main embankment of the 
Yangtze River in the southern Jingzhou zone plays a 
significant role in flood control of the Yangtze River Valley. 
Its distinguished characteristics, such as its great span length 
and complicated geological strata, certify the substantial 
value of this research.  

2. HARMONIOUS FINITE ELEMENT (HFE) FIRST-
ORDER STOCHASTIC APPROXIMATION ALGORITHM 

 As for the conventional finite element method, the 
governing equation, on the basis of the minimum potential 
energy principle, can be formulated as (Zhuo 2000) [5]. 

T T T T
p

1 ,      ,   d d
2 v s

v sδ δ δΠ = δ − = = +∫ ∫K Q K Q Q N f N p

 (1) 

where pΠ  is the total potential energy, δ  is the generalized 
displacement array, K  is the stiffness matrix, Q  is the 
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equivalent nodal load array, N  is the shape function 
interpolation matrix, f  is the body force array, p  is the 
surface load array, v  is the spatial domain, and s  is the 
surface domain. In practical engineering problems, K and Q 
are usually the functions of stochastic variable vector 

{ }1 2, nx x x= X . So, should be deduced as a function of 

{ }1 2, nx x x= X : ( )1 2, nx x x= δ δ . There have been 
many numerical algorithms that treat the randomness of X 
(Lü and Feng 1997; Chen and Liu 1990; Wang and Chen 
1996; Zhuo 2000; Christian and Baecher 1999) [2-6]. The 
first-order approximation theorem is applied here to expand 
the δ into a Taylor series around the mean values of X (Yang 
and Zhao 1999; Lü and Feng 1997)[1, 2]. In this study, the 
linear first-order expansion was adopted. The expectation of 
the generalized displacement array δ  can be expressed in the 
following equation: 
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where ( )E δ  is the mathematical expectation of δ  and 

( 1, 2, , )ix i n=   is the even value of an algorithm model 
variable. When the nodal value of the generalized 
displacement array is expressed as ( )1,2, ,i i mδ =  , with m 
representing the node number of the corresponding 
numerical model, we have 
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where arV ( )iδ  is the variance of iδ , ovC ( , )k lx x  is the 

covariance of xk and xl, and i

kx
δ∂

∂
 and i

lx
δ∂

∂
 are the partial 

derivatives of generalized nodal displacement iδ  with 
respect to xk and xl at the mean value of X. Similarly, in the 
harmonious finite element algorithm, the stress vector σ  is 
also a function of random variable X: ( )1 2, nx x x= σ σ . 

When the element stress is expressed as ( )1 2,i i nx x xσ σ= 

, its corresponding variance as well as covariance can be 
formulated as follows (An et al. 2002) [7]: 
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 For further information on Eq. 4, one can refer to related 
work (Christian and Bacher 1999; An et al., 2002; Xu 2001) 
[6-8] that has offered the key algorithms for 1 / kxσ∂ ∂ , 

2 / kxσ∂ ∂ , and max / kxτ∂ ∂ . Based on the content of the cited 
research, variance and covariance values of normal stress 
and maximal shear stress can be obtained from Eq. 4. 
Moreover, because the influence of structure body force is of 
great importance to stochastic numerical models for geo-
engineering (Xu 2001) [8], the random vector Q  in Eq. 1 is 
also a function of X. 
3. RANDOM MODEL FOR LOCAL FAILURE OF 
HETEROGENEOUS STRUCTURE 

 Analyzed here is the local failure probability of an 
isotropic heterogeneous geo-structure without a predominant 
discontinuous slip crack interlayer. The failure probability 
under shear deformation and tensile deformation was 
calculated with the Mohr-Coulomb failure criterion. The 
strength characteristics of geo-material mainly include 
cohesive force c and internal friction angle φ . Owing to the 
intrinsic stochastic discreteness of survey data of c and φ , c 
and φ  can be regarded as random variables (Chowdhury and 
Xu 1995; Guo and Wen 1992) [9,10]. Two principal safety 
reserve models are adopted in this study. They are the shear 
model qs and the tensile model qt, whose expressions are as 
follows: 
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where fτ  and maxτ  are, respectively, the distance from the 
center of the Mohr stress circle to the limiting failure line 
and the radius of the stress circle, and 1σ  and 2σ  are the 
maximum principal stress and intermediate principal stress, 
respectively. 
 It can be inferred from the foregoing analysis that qs and 
qt are stochastic variables. Therefore, their expectations and 
variances are formulated by the following equations: 
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4. FUZZY STOCHASTIC FAILURE MODEL OF 
HETEROGENEOUS STRUCTURE  

 With the Mohr-Coulomb failure criterion and limiting 
equilibrium theorem, the safety factor of a heterogeneous 
geo-structure can be defined as follows: 
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 The reliability index is used to evaluate the random 
working behavior of geo-structures (Hassan and Wolff 1999; 
Low et al. 1998) [11,12]. Based on the assumption that qs 
and qt submit to Gaussian distribution, the reliability index 
can be expressed as 

s s
/q qβ µ σ= , where 

sqµ  and 
sqσ  are, 

respectively, the even value and mean-square deviation of qs. 
 The general failure probability Pf of geo-structures can be 
formulated as follows: 
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2
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f
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where Z is the status function of geo-structures; zσ  and zµ
are, respectively, the mean-square deviation and even value 
of the status function Z; and z is the probabilistic integration 
variable whose span is determined by Z. The generalized 
membership function M  of geo-structure working behavior 
is expressed in Zadeh notation as Eq. 10, which, as softening 
technology, can realize the fuzzy formulation of the safety 

reserve model: 

where g(X) is the status function, ( )M gµ   X  is the 
membership, and Ω  is the fuzzy coverage.  
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 Based on the extension principle, the descriptions of 
failure probability and reliability index, Pf

*, the fuzzy-
stochastic failure probability of geo-structure local 
deformation can be expressed as 
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where all parameters are defined based on the qs status 
function of geo-structures: 

sqσ  and 
sqµ  are, respectively, the 

mean-square deviation and even value of the status function 
qs, and  s( )M qµ  is the fuzzy-stochastic membership.  

 Furthermore, in order to better analyze the embankment 
slope failure model, the comprehensive safety ratio Rs is 
defined as (Wang 2004) [13]. 
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s
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−
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 Uniting foregoing contents, the membership functions of 
three fuzzy models are shown in Table 1.  
5. FUZZY STOCHASTIC NUMERICAL ALGORITHM 
APPLICATION TO EMBANKMENT STRUCTURE 

 In this study, in order to investigate the random working 
behavior of the geotechnical structure, a typical section 
580+500 of the main embankment of the Yangtze River in 
the southern Jingzhou zone of China was analyzed with the 
local failure model using the fuzzy stochastic numerical 
algorithm. 
 Fig. (1) shows the cross section of the dike structure. The 
dike structure is divided into three stuff-fill zones whose 

Table 1. Membership functions of three fuzzy models. 

Fuzzy models Membership functions 
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s

s
s s
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material parameters are shown in Table 2. 

 
Fig. (1). Cross section of the dike structure (m). 

 Under gravitational body loading, the numerical model 
grid, whose boundary limit runs 19.4 m away from the 
upstream dike-ankle and 18.3 m away from the downstream 
dike-toe, has 275 elements and 174 nodes. It is assumed that 
the material parameters are statistically independent. 
Covariance matrixes of random parameters of three material 
zones are reduced to diagonal matrixes (Schweiger et al. 
2001) [14] and the principal diagonal elements are the 
following: 

diog(
1ovC )=(0.50,0.24,0.30,0.44,0.17) 

diog(
2ovC )=(0.32,0.24,0.30,0.14,0.17) 

diog(
3ovC )=(0.15,0.24,0.13,0.44,0.21) 

 Fig. (2) presents the deformed grid of a typical section 
under loading and it is evident that the stress concentration 
zone is in the middle region of embankment body. The latter 
displacement contour figures and stress contour figures (Fig. 
(3), Fig. (5), Fig. (7), and Fig. (8) demonstrate this fact as 
well. 

 
Fig. (2). Sketch of mean deformations of dam mesh. 

 
Fig. (3). Contours of mean of x-displacement in embankment 
section (m). 

 From Fig. (3) it can be deduced that the maximum 
gradient variation of the x displacement accumulates in the 
middle region of the embankment system, which is 
consistent with monitoring information (Wang 2004) [13]. 
Furthermore, some cracks almost break through the whole 

dike crown on the local embankment sections. There are two 
reasons for this. The first is continual hydraulic scouring and 
random oscillation of the predominant waterline that can be 
summarized as external hydraulic influence, and the second 
is intrinsic stochastic characteristics. Sandy soil layers 
occupy most of the geo-space of the main embankment of 
the Yangtze River in the southern Jingzhou zone. The 
embankment foundation has a small expectation value of y 
displacement and a high value of E. However, shear 
deformation occurs and a local seepage channel is formed in 
the middle region of the embankment system. They have 
often put the embankment system in danger. Therefore, the 
high probability of absolute collapse under embankment-
base erosion deformation must receive more attention. The 
displacement variance contours Fig. (4) and Fig. (6) show a 
small magnitude of variation of the stochastic displacement 
field, by which it can be deduced that the variation of the 
random displacement field has a low sensitivity to stochastic 
turbulence of material parameters. 

 
Fig. (4). Contours of variance of x-displacement in embankment 
section (m2). 

 
Fig. (5). Contour of mean of y-displacement in embankment section 
(m). 

 
Fig. (6). Contour of variance of y-displacement in embankment section 
(m2). 

 Random fluctuation of the stress field of the main 
embankment is shown in Figs. (7-10). The stress distribution 
shows great discreteness, and the stress variance is 102 times 
larger than the displacement variance in some regions. The 
high sensitivity of the stress field to random material 
parameters aggravates the stress concentration. Related 
research (Christian and Baecher 1999) [6] shows that these 
characteristics are consistent with the stochastic calculation 
results of qs and qt, and reveal potential danger in the local 
region of the embankment. Expectation values of the two 
principal safety reserve models are low enough to undermine 

Table 2. Material properties of dike body. 

Zone E (MPa) v ρ (106 g∙m-3) c (kPa) ω (o) 

1 4.1 0.3 1.41 15 18 

2 2.8 0.25 1.55 21.6 21 

3 14 0.1 1.64 0 31 
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partial geo-zones, and this is demonstrated by on-the-spot 
investigation of the main embankment of the Yangtze River 
in the southern Jingzhou zone. 

 

Fig. (7). Contours of mean of principal stress 1σ  on embankment 
section (MPa) 

 
Fig. (8). Contours of variance of principal stress 1σ  on 
embankment section (MPa2). 

 

Fig. (9). Contours of mean of shear stress xyτ  on embankment 
section (MPa). 

 

Fig. (10). Contours of variance of shear stress xyτ  on embankment 
section (MPa2). 

 Like the displacement field and stress contour 
distribution, the safety factor Fs contour distribution (Fig. 
11) shows the risk tendency of the dike middle region where 
Fs reaches its minimum. Meanwhile, the safety factor Fs also 
decreases in the dike crown because the magnitude of the 
shear model qs is 10-2 in the dike crown. The small 
magnitude of the reliability index   ( β (Fig. 12)  ) occupies 
most of the space of the dike middle region. Both Fig. (11) 
and Fig. (12) indicate that local failure mainly occurs in the 
dike middle region. 

 
Fig. (11). Contours of safety factors Fs on embankment section. 

 
Fig. (12). Contours of reliability index β  on embankment section. 

 The main embankment of the Yangtze River in the 
southern Jingzhou zone is characterized by a strata structure 

and the dike middle region is in high danger due to stress 
concentration. The embankment crown absorbs more stress 
momentum than downstream and upstream. A sandy 
sediment substratum with a highly variable stress field 
becomes a dead zone where the embankment foundation is 
easily undermined when the exterior water level fluctuates 
greatly. Moreover, as Fig. (11) shows, the deterministic 
numerical analysis reflects mainly the outer layer working 
behavior whose reserve safety factor, calculated by qs, only 
reaches a minor magnitude of 10-2. On the contrary, the  
 
working behavior of the embankment system core layer is  
described by the failure probability contour distribution (Figs 
13-15) and analyzed by three fuzzy stochastic mathematical 
models, the half depressed gamma distribution with failure 
probability P*

fΓ, the half depressed normal distribution with 
failure probability P*

fN, and the half depressed echelon 
distribution with failure probability P*

fE. The conformity of 
random distribution characteristics of stress contours and the 
reliability index contours also indicate the dangerous 
working behavior of the dike body core layer. of 
embankment section for half depressed normal distribution. 

 
Fig. (13). Contours of local failure probability P*

fN. 

 
Fig. (14). Contours of local failure probability P*

fE of embankment 
section for half depressed echelon distribution. 

 
Fig. (15). Contours of local failure probability P*

f of embankment 
section for half depressed gamma distribution. 

CONCLUSION 

(1) In contrast to the conventional finite element numerical 
algorithm, which can only calculate the deterministic 
vector fields including displacement and stress, the 
stochastic numerical algorithm is able to generate random 
vector fields: expectation value, variance and variation of 
displacement and stress. 

(2) The first-order approximation algorithm offers a definite 
numerical model, and has superior calculation accuracy 
and effective applicability for random simulation with 
parameter variation less than 0.3, though its numerical 
program development is complex. 
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(3) Softening technology is able to realize the fuzzy 
formulation of the safety reserve model that can analyze 
the uncertainty of the geo-structure working behavior. 
Three fuzzy mathematical models have been introduced 
in this study to comprehensively study generalized vector 
field characteristics. 

(4) The model calculation results indicate that the dike 
middle region is the principal concentrated failure zone, 
which is demonstrated by the on-the-spot investigation. 
Furthermore, there is also some local shear failure on the 
dike crust.  
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