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Abstract:

Background:

Stiffened panels are being used as a lightweight structure in aerospace, marine engineering and retrofitting of building and bridge
structure. In this paper, two efficient analytical computational tools, namely, Finite Element Analysis (FEA) and Artificial Neural
Network (ANN) are used to analyze and compare the results of the laminated composite 75-hat-stiffened panels.

Objective:

Finite Element (FE) is an efficient and versatile method for the analysis of a complex problem. FE models have been used to generate
data set of four different parameters. The four parameters are extensional stiffness ratio of skin in the longitudinal direction to the
transverse  direction,  orthotropy  ratio  of  the  panel,  the  ratio  of  twisting  stiffness  to  transverse  flexural  stiffness  and  smeared
extensional stiffness ratio of stiffeners to that of the plate.

Results and Conclusion:

For training of ANN, multilayer feedforward back-propagation has been used as a network function with two-hidden layers in the
neural network. The good network architecture is achieved after several iterations to predict the buckling load of the stiffened panel.
ANN prediction for unknown new data set is in good agreement with FEA results of different cases, which show that ANN tool can
be used for the design of complex structural problems in civil engineering and optimization of the laminated composite stiffened
panel.

Keywords: ANN, Buckling Analysis, Composite Panel, Compressive Loading, Fiber-Reinforced Polymers (FRP), Hat-stiffener.

1. INTRODUCTION

Nowadays, Lightweight structures are being used in various engineering applications. Fiber-Reinforced Polymers
(FRP) meet this requirement to a great extent. They are extensively used in defense, aircraft, and automobiles and now
they are extensively used in Civil engineering structural applications. FRP stiffened panels are being used as the load
shared walls of the compressive member of structures. Composite panels are also used in multi-story building to reduce
the dead load of the structure. FRP laminated panels are currently used in heritage building for retrofitting due to their
high strength and aesthetic appearance. The design of laminated composite panel should be such that it can achieve
better  performance  with  specific  strengths.  Buckling  load  capacity  of  the  stiffened  structure  with  the  variation  in
different  parameters  can  be  studied  separately  using  the  analytical  method,  Finite  Element  Method  (FEM)  and
experimental  study.
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Terminology Description
A11, A12,A22, A66 Extensional stiffness component of skin
D11, D12,D22, D66 Bending stiffness component of skin

p Pitch length (center to center spacing of stiffeners)
D1/D2 Panel orthotropy ratio

Bakis  et  al.  [1]  presented  detailed  studies  on  buckling  of  laminated  structures  and  its  application  in  civil
engineering.  Ni  et  al.  [2]  presented  a  review  of  recent  research  based  on  two  aspects  application  of  FEM  and
experimental work with different loading conditions. Guo et al. [3] presented parametric studies of stiffened panels that
were presented for skin thickness to length ratios, ply configuration, stiffener depth to skin thickness ratios and panel
aspect  ratios.  Stroud  and  Anderson  [4]  studied  numerical  formulation  to  find  the  buckling  load  of  blade  type,  hat-
stiffeners,  and corrugated stiffened panel.  Smeared stiffeners  technique is  used to analyze the laminated composite
panel subjected to the various type of in-plane loading with different type of stiffener [5, 6].

Kong et  al.  [7]  studied  the  panels  analytically  and  experimentally  to  show the  influence  of  ply  orientation  and
stiffener shaped on buckling strength and failure load of the stiffened panels.  Zimmermann et  al.  [8]  conducted an
experimental study on the buckling behavior of stiffened panels with different skin thickness and variation of I-shaped
stiffeners. Pevzner et al. [9] proposed an extended effective width method to study the torsion, bending and buckling of
curved stiffened panels with T-shaped and J-shaped stiffeners. Experimental study of buckling behavior and failure
mode  of  the  composite  panel  with  different  shapes  of  stiffeners  under  compression  were  conducted  by  different
researchers [10 - 12]. Borrelli et al. [13] investigated kinematic coupling approaches for FE simulation of the buckling
behavior of laminated stiffened structures. Wang et al. [14] presented experimental strain analysis to find the buckling
load, and the ultimate carrying capacity of two panels with four equally spaced I-shape stiffeners. Parametrical studies
were performed to assess the influence of skin thickness, stiffener spacing and stiffener depth on the buckling strength
of grid panels using different FE based software [15 - 17]. Reliability assessment of the post-buckling compressive
strength  of  different  laminated  composite  structures  under  axial  compression  was  studied  with  the  application  of
progressive failure analysis methodology [18 - 20].

A  review  work  of  thoughtfulness  showed  various  philosophies  of  ANN  prediction  in  the  area  of  laminated
composite property, design and optimization [21]. Kadi [22] presented a review on pattern estimation of the mechanical
behavior of fiber-reinforced combined materials  with the help of ANN tool.  Rogers [23] developed a guideline for
designing  and  training  an  ANN  to  simulate  the  structural  analysis  program.  Mallela  and  Upadhyay  [24]  used  a
computational tool (ANN) for predicting the buckling load of the panel subjected to in-plane shear loading. The results
of ANN were compared with FEM results of stiffened panels [25]. Alqedra and Ashour [26] performed ANN to study
the  significant  parameters  on  the  concrete  shear  capacity  of  anchor  bolts.  Few  researchers  have  used  ANNs  for
predictions of the behavior of laminated composite materials [27].

Many researchers conducted parametrical studies of buckling of the laminated composite panel with blade type, I-
shaped  and  T-shaped  stiffeners  due  to  various  types  of  in-plane  loading,  but  the  parametrical  studies  of  buckling
response of laminated composite panel with hat-stiffeners under compressive loading have found less consideration.
The present paper deals with the optimization of laminated composite hat-stiffened panels under in-plane compressive
loading by using ANNs with FEA generated data set. The ANNs have been trained by using a generated database of FE
models. The trained network has been tested to predict the buckling load of stiffened panels. Optimum neural network
architecture has been established and tested with unknown data set.

2. FE ANALYSIS AND VALIDATION STUDIES OF LAMINATED COMPOSITE PANELS

FE analysis has been performed for the hat-stiffened panel under compressive loading by using ABAQUS software.
The laminated composite hat-stiffened panel has been modeled carefully to define the material properties of skin and
stiffeners, number of layers, thickness and fiber orientations of the skin. Shell element (S4R) has been taken for FE
analysis of panel in ABAQUS [36], which possesses both bending and membrane capabilities. Uniformly distributed
edge compression load of 1 kN/m has been applied to the panel in stiffeners direction. The model has been submitted
for eigenvalue buckling analysis with application of simply supported boundary conditions on the panel. The buckling
load has been obtained by multiplying the edge compressive load and the eigenvalue obtained from the FE analysis.



470   The Open Civil Engineering Journal, 2018, Volume 12 Kumar et al.

2.1. Validation Studies

The  model  of  the  hat-stiffened  panel  has  been  validated  with  results  reported  by  Stroud  et  al.  [5]  which  were
obtained through the Engineering Analysis Language (EAL) on hat-stiffened panel of dimension 762 mm x 762 mm
with six hat stiffeners. In the present studies, 38.1 mm global size of the element has been taken for the analysis of
stiffened panel and the eigenvalue from the present studies is in good agreement with EAL results of hat-stiffened panel
as reported by Stroud et al. [5]. The hat-stiffened panel has been discretized with shell element (S4R) and 820 elements
are  generated of  the  panel  as  shown in  Fig.  (1).  The results  from the present  study have been found to  be in  good
agreement  with  EAL  results  reported  by  Stroud  et  al.  [5]  for  a  panel  under  compression  and  combination  of
compression-shear as the results are tabulated in Table 1. It has been found that the buckling mode shapes obtained are
symmetrical for compression and combination of compression-shear, which is in good agreement with buckling mode
discussed by Stroud et al. [5].

Table 1. Validation of FE model.

Applied Load
(kN/m)

FE Analysis (eigen value) % Difference

*100

FE Analysis Mode Shape

Stroud et al. [5]
(a)

Present study
(b)

Stroud et al. [5] Present study
NX NXY

175.1 0 3.0042 3.0158 0.38 Symmetric Symmetric
175.1 175.1 2.3268 2.2386 -3.79 Symmetric Symmetric

Fig. (1). Hat-stiffened panel discretized with shell element (S4R).

2.2. Numerical Studies of Panel

Numerical studies have been carried out by analyzing 75-hat-stiffened panel of dimension 762 mm x 762 mm as
shown in Fig. (2) with a variation of pitch length (84.67 mm to 381 mm) and depth (25 mm to 55 mm) of the stiffener
with a fixed top width of 25 mm. The Carbon Fiber Composite (CFC) material property of each ply of thickness 0.125
mm is given in Table 2. Three types of plies configuration of skin are used for plate element and stiffener component of
the panel, which is illustrated in Table 3. A program was developed on the basis of smeared stiffness approach by using
formulae given below for different pre-decided orthotropy ratio with a variation of pitch length of stiffener for finding
the corresponding hat-stiffener depth by trial and error for three different skin considered separately. The obtained depth
of stiffener has been used for FE modeling of the panel. The buckling analysis has been done on the stiffened panel
subjected to uniformly distributed edge compressive load with simply supported boundary condition on all edges.

(
𝑏−𝑎

𝑎
)
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Table 2. Material properties of CFC used in the analysis (Sudhirsastry et al. [17]).

Quantity Symbol Units CFC materials
Young’s modulus 0 E11 GPa 164
Young’s modulus 90 E22 GPa 12.8
Shear modulus in plane 12 and 13 G12= G13 GPa 4.5
Shear modulus in plane 23 G23 GPa 2.5
Poisson ratio in plane 12 υ12 - 0.32
Ultimate tensile strength 0 X1t MPa 2724
Ultimate compressive strength 0 X1c MPa 111
Ultimate tensile strength 90 X2t MPa 50
Ultimate compressive strength 90 X2c MPa 1690
Ultimate shear strength in plane 12 S12 MPa 120
Ultimate shear strength in plane 13 S13 MPa 137
Ultimate shear strength in plane 23 S23 MPa 60
Density ρ Kg/m3 1800

Parameters have been identified by generated data, which influence the buckling load of the stiffened panel. The
parameters A11/A22 are extensional stiffness ratio of the skin in the longitudinal direction to the transverse direction,
D1/D2  gives  the  global  flexural  properties  of  the  panel,  D3/D2  gives  the  idea  of  the  torsional  rigidity  of  panel  and
(EA)S/(EA)P gives the knowledge about the material strength of stiffener to that plate. For a given skin of the panel, the
ratios D1/D2 and (EA)S/(EA)P of the stiffened panel increase only by increasing pitch length and depth of stiffener. Local
buckling of  the panel  is  increased with increasing the depth of  stiffener.  Less  depth of  hat-stiffener  of  the panel  is
required to be used to reduce the local bucking of the stiffened panel. Fig. (3a and 3b) shows the global buckling mode
of the 75-hat-stiffened panel under compressive loading for different pitch length and D1/D2. Stroud and Anderson [4]
gave the formulae for input parameters using ANN as listed below.

Fig. (2). The structural geometry of hat-stiffened panel.
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Fig. (3). Global buckled mode shapes of panel for (a) skin-1 with D1/D2 = 200, (b) skin-3 with D1/D2 = 100.

Flexural stiffness of the panel (D1) in the direction of the stiffener (Eq. 1)

(1)

Flexural stiffness of panel (D2) in the direction transverse to stiffener (Eq. 2)

(2)

The smeared extensional stiffness of element per pitch (Eq. 3)

(3)

 = smeared extensional stiffness ratio of the stiffener to that plate per pitch

Twisting stiffness of panel (D3) per pitch (Eq. 4)

(4)

For open-section panels is given by (Eq. 5)

(5)

For closed-section panels is given by (Eq. 6)

(6)

Where i = type of element of the panel (plate or stiffener)

bi = width of the element

p = pitch length of the panel

Zi = distance from the neutral axis of the cross-section to the centroid of the element.

𝐷1=
1

P
 ∑ (𝐴11 − 

𝐴12𝑖
2

𝐴22𝑖

)𝑖 (𝑏𝑖𝑧𝑖
2 +

𝑏𝑖
3

12
 2sin ) + 𝑏𝑖𝐷11𝑖 2cos    

D2 = (D22)Plate    

(𝐸𝐴)𝑖=
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P
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2
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(a) Hat-stiffener with pitch length = 190.5 mm (b) Hat-stiffener with pitch length = 127 mm 
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ϴ = inclination of the element with the horizontal direction.

Ā = area enclosed by closed-section in one period.

3. PREDICTION OF BUCKLING LOAD BY ANN

The neural network is a computational technique, which was inspired by the working pattern of human biological
brains [28, 29]. The neural network is a combination of an input layer, hidden layer and output layer. Further hidden
layer can be more than one layer, which is problem-specific. All three layers are connected with different nodes and
node connection with specific weight and a bias value. There are different types of networks available for prediction,
but  the  problem  defines  which  network  is  more  suitable  for  best  output.  Multilayer  feedforward  networks  are
universally  accepted  and  result  in  the  desired  accuracy  with  a  specific  sense  [30,  31].  For  prediction  of  Civil
engineering problems, the most widely used network is feed-forward backpropagation. The present work is divided into
four steps as follows:

Selection of training and testing data from the main datasheet.
Deciding the network type and another required parameter.
Training the network and simulation.
Evaluation of the performance of ANN network.

3.1. Selection of Training and Testing Data from the Main Data-sheet

102 number of FE model of simulated data-set has been divided into two parts: training data set and test data set.
The data have considered the combination of 75% data for training purpose and 25% data for testing purpose. Four
different input variables A11/A22, D1/D2, D3/D2 and (EA)S/(EA)P have been taken, which influence the buckling problem
of the hat-stiffened panel under compressive loading and buckling load per unit Area is taken as output for preparation
of networks. The parameter A11/A22 is varied as 0.59 (for skin-3) and 1.68 (for skin-1) as shown in Table 3. D1/D2 is
taken in the range 100-500 with a variation of depth of 75-hat-stiffener for pitch length of 84.67 to 381 mm. D3/D2

varied in the range of 7.4 - 68.1 for variation of the shaped of hat-stiffener. The parameter (EA)S /(EA)P varied as 0.14
to 1.01 with a variation of depth of stiffener for different skins.

Table 3. Plies configuration of elements of the panel having 0.125 mm thickness of each ply.

Panel component
( plate and stiffener of same skin)

Plies configuration Each ply thickness
(mm)

A11/A22 D11/D22

Skin – 1 [[30/-30/90/0]s]s 0.125 1.68 1.81
Skin – 2 [[45/-45/90/0]s]s 0.125 1.00 0.95
Skin – 3 [[60/-60/90/0]s]s 0.125 0.59 0.49

3.2. Deciding the Network Type and Another Required Parameter

Development of perfect network with a proper combination of the input layer, hidden layer and the output layer is
necessary for good prediction of results. The input node is the combination of four different parameters A11/A22, D1/D2,
D3/D2 and (EA)S /(EA)P to obtain the desired output. Once after deciding the input and output parameter, the next step is
to find the architecture of hidden layers. For finding the best suitable hidden layer, different types of combination of
layers have been taken as shown in Table 4. Results from one hidden layer were given the desired output with different
weight value connection for continuous function but the selection of the second layer for the discontinuous function
[32]. The hidden layer can be one or more than one, but there is no fixed theory for the selection of hidden layers. Some
cases in the hidden layer selection were based on the quality and quantity of the training data [33]. Some situation in the
multi-hidden layer was given better result over the single hidden layer [34 - 36]. The hidden layer should contain a total
number of neurons equal to the one greater than twice the number of input parameters [33]. It is not easy to select any
fixed  pattern  for  a  selection  of  hidden  layer;  normally,  it  is  based  on  the  trial  and  error  method.  Table  4  shows  a
reflection of the different types of hidden layer combination and plot R square after testing and validation with the help
of observed and actual data. Network performance has been considered on the basis of a mean square error at the time
of training and testing, where mean square error is found to be 0.0140 and 0.8091 at the time of training and testing,
respectively for the best network. Finally, a neural network architecture 4-7-2-1 has been obtained as shown in Fig. (4),
which gives the desired output for the prediction of buckling load per unit area of the hat-stiffened panel.
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Table 4. Comparative study of R-square for different number of hidden nodes and hidden layers.

Input Nodes Hidden Nodes Output Nodes R2

1st Layer 2nd Layer
4      5 0 1 0.8896
4      13 0 1 0.9167
4      15 0 1 0.9181
4      9 0 1 0.9334
4      7 3 1 0.9451
4      8 4 1 0.9574
4      5 4 1 0.9590
4      6 3 1 0.9692
4      11 0 1 0.9848
4      6 0 1 0.9848
4      4 3 1 0.9850
4      10 0 1 0.9871
4      8 0 1 0.9883
4      7 4 1 0.9896
4      8 2 1 0.9898
4      7 0 1 0.9905
4      8 3 1 0.9952
4      7 2 1 0.9983

Fig. (4). Architecture diagram of a 4-7-2-1 multi-layer feedforward back-propagation neural network.

3.3. Training the Network and Simulation

It is observed that ANN is the best tool for predicting the buckling load per unit area based on good training and
testing data. A neural network architecture 4-7-2-1 has been selected which is best suitable for this problem. Fig. (5)
shows the process of multilayer feedforward back-propagation as a network function in this work. There have some
working steps of this network as follows:
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Feed forward in training pattern.
Comparison and calculation of error.
If the result is good, then draw output; otherwise, back propagation starts and weights are adjusted.
Back-propagation works in a loop till the desired output is not received.

Fig. (5). The process of feed forward back-propagation in the neural network.

There is a very high range of training function available in Matlab where TrainLM is used for training function
which has given better results. Also, LearnGDM has been used for adaptive learning function. Two hidden layers have
been used for the network creation. The tan-sigmoid transfer function has been used for the hidden layer, where the
range of tan-sigmoid is -1 to 1. The pure linear transfer function has been used for the plot, the output result, and this
combination gives a better result.

R-squared is a statistical measurement of data, which checks the data closeness to the best-fitted regression line. R-
squared is also known as the coefficient of determination. R-squared value varies from 0 to 100 percent, where ‘0’
percent shows worst fit to the regression line and 100 percent shows best fit to the regression line.

Suitable  network  was  found  after  many  iterations  of  training  of  the  network  for  satisfactory  prediction  of  the
buckling load. R-squared value has been estimated for every network and the best network was found for the prediction
of buckling load per unit area of the panel. Also, a continuous checking of the performance based on mean square error
has been calculated for training and testing. Continuously training and testing work was done until  the best-trained
network was not found. After the selection of the best network, the next step is to note the weight value and bais value
of that network for future prediction.

3.4. Evaluate the Performance of ANN Network

The performance of  the  neural  network has  been verified using new data  set  and the  result  of  the  new data  set
reflects the accuracy of the trained network. The best prediction of results has been obtained for the new data from the
selected neural network model. Finally, the error between the actual data and predicted output data has been found
which shows good performance of the neural network.

4. RESULTS AND DISCUSSION

In this paper, the multilayer feedforward back-propagation process has been used as a network function with neural
network architecture 4-7-2-1 as  shown in Fig (4).  The neural  network has been trained to get  suitable  value of  the
buckling load per unit area of the panel. Weight value matrix (W1), which is connected to four input nodes to seven 1st

hidden layer nodes is obtained as:

Weight value matrix (W2), which is connected to seven 1st hidden layer nodes to two 2nd hidden layer nodes:

W1 = 

[
 
 
 
 
 
 
−0.3055 0.8393 −0.2013 
0.4546  −0.1903 −0.6738 
0.2031 −2.1879 2.2828

−2.9280
0.3047
0.6275

−1.7214 −0.6199 −0.5154
−1.4015 −0.5750 −0.0214
0.5592

−2.2713
−0.5159
−1.3913

1.9310
0.0685

0.3579
0.5097
0.2174
0.7581 ]
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Weight value matrix (W3), which is connected to two nodes of 2nd hidden layers to one node of output layer:

Bais for different hidden layers are given below:

For output layer: (b3) = [-0.6399]

Fig. (6) shows the linear regression graph between the target of FEM result and ANN prediction. The regression line
is obtained as Y = Slope *X + Intercept, where the slope is 1.0052 and the intercept is -0.1978. The standard error of
slope and intercept are 0.00881and 0.52658, respectively. R-Square value is 0.9983, which is nearer to 1:1 line. This
result shows that the regression line is a very good fit.

Fig. (6). Linear regression graph between target (FEA Result) and ANN prediction.

For different D1/D2 and skin, a variation of buckling load per unit area of the panels with (EA)S/(EA)P is shown in
Fig. (7a and 7b), which is obtained by FEA and ANN. It is observed that with the increase in (EA)S/(EA)P, buckling
load per unit area increases up to certain values of (EA)S/(EA)P for all D1/D2 in a different skin; after that, the buckling
load  per  unit  area  is  approximately  constant.  The  minimum  value  of  (EA)S/(EA)P  is  obtained  for  all  D1/D2  of  the
different skins from Fig. (7a and 7b) at which the hat-stiffened panel has the maximum buckling load per unit area.
Therefore, this minimum value is defined as optimum (EA)S/(EA)P of the hat-stiffened panel and hence the number of
the stiffener and depth of the hat-stiffened panel are increased to a certain limit for efficient bucking performance of the
panel without unnecessary increase in the weight of panel and the local buckling. The pitch length and depth of the hat-
stiffener of the efficient bucking performance of the panel can be found on the basis of obtained optimum (EA)S/(EA)P

of the hat-stiffened panel for different orthotropy ratio D1/D2. It is observed that the curve obtained from ANN results is

W2 = [
1.2617 0.1387 −1.8535 0.2512 −1.0811 −1.0851 0.3747
−0.3869 0.3925 0.1843 0.3254 −0.4691 −0.6722 0.1032

] 

W3 = [−1.2679 −2.0134] 

For first hidden layer: (b1) = 

[
 
 
 
 
 
 
−2.6436
−0.5004
−0.1125
0.1256

−0.4688
2.0969

 −1.9752]
 
 
 
 
 
 

 

For second hidden layer: (b2) = [
−1.3818
0.74469

]  
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similar to the pattern obtained by FEA. It is also observed that ANN prediction curve for D1/D2 = 150 and 250 is in-
between the FEA curve for D1/D2 = 100 to 200 and D1/D2 = 200 to 300 respectively.

Fig. (7). Buckling load/Area of the hat-stiffened panel vs. (EA)S/(EA)P for different D1/D2 and skin.

Fig.  (8a  and  8b)  shows  the  comparison  of  the  FEA  results  with  ANN  predicted  results  with  a  variation  of
(EA)S/(EA)P for skin-1 and skin-3. It is observed that the results obtained from ANN are similar to the results of FEA
data and sometimes it overlaps with each other for D1/D2 = 150 and 250 with both skin-1 and skin-2. Also, Table 5
shows the comparison the FEA results with ANN predicted of new data with percentage difference. The maximum and
minimum  percentage  difference  of  ANN  predicted  with  FEA  results  is  found  in  about  2.193%  and  0.064%,
respectively.

Fig. (8). Comparing FEA results with ANN predicted results vs. (EA)S/(EA)P for different skin.

In the above discussion, it has been found that prediction of the buckling load of the stiffened panel by ANN is in
good  agreement  with  FEA  results  for  different  cases.  Therefore,  ANN  is  a  good  analytical  computation  tool  for
prediction of buckling capacity of the simply supported hat-stiffened panel under compressive loading. Hence, ANN the
tool can be used to design complex problems of structural application in civil engineering and optimization of laminated
composite structural.
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Table 5. Comparison of FEA results with ANN predicted results.

A11/ A22 D1/ D2 D3/ D2 Buckling Load/Area (MPa) % Difference
FEA results

(x)
ANN results

(y)
1.68

0.59

150

250

150

250

10.02
13.84
14.76
21.01
12.80
21.03
18.94
31.89

0.16
0.36
0.18
0.42
0.22
0.63
0.26
0.74

20.403
37.190
23.050
56.655
36.360
65.875
41.079
96.720

20.73
37.626
23.556
55.749
36.337
66.364
41.619
97.810

1.602
1.173
2.193
-1.599
-0.064
0.743
1.315
1.126

CONCLUSION

Buckling of the laminated composite 75-hat-stiffened panels has been analyzed by the artificial neural network with
FEA generated data. Numerical studies are carried out with a variation of four different parameters A11/A22, D1/D2, D3/D2

and (EA)S /(EA)P with 75-hat-stiffeners. From the above results and discussion, it is observed that ANN can be used
efficiently for predicting the buckling load with different types of loading condition for better design of the stiffened
panel. The following conclusions are drawn:

The well trained Neural network gives the best result with the help of network architecture 4-7-2-1.
The optimum (EA)S/(EA)P increases with the decreasing A11/A22 of the skin for all D1/D2.
The optimum (EA)S/(EA)P increases with the increasing D1/D2 for the same skin.
For better design of the hat-stiffened panel, the pitch length and depth of the hat-stiffener can be obtained with
the help of optimum (EA)S/(EA)P of different orthotropy ratio D1/D2.
The maximum and minimum percentage difference of ANN predicted and FEA results are obtained 2.193% and
0.064% respectively.
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