All published articles of this journal are available on ScienceDirect.

RESEARCH ARTICLE

Study on the System Reliability of Steel-Concrete Composite Beam Cable-stayed Bridge

The Open Civil Engineering Journal 29 July 2016 RESEARCH ARTICLE DOI: 10.2174/1874149501609010194

Abstract

Steel-concrete composite beam cable-stayed bridge is a complicated system consisting of a composite beam, tower, and stayed cables. And the composite beam is composed of a steel beam, bridge deck and connectors, which has a different mechanical behavior from the general beam structure. In a word, the steel-concrete composite beam cable-stayed bridge is characterized by specific mechanical behavior and has many influencing factors. Thus, its safety analysis often cannot be easily implemented. This paper aims to study the component reliability of the steel-concrete composite beam based on the stochastic finite element method (SFEM) and the recognition of main failure modes in the system reliability of the cable-stayed bridge. For the component reliability of the steel-concrete composite beam, a nonlinear element model with 10 degrees of freedom (DOF) is adopted, which can consider the particular longitudinal slip effect between the steel and concrete. And the direct differential method (DDM) is used to deduce the response gradient of the element model. Meanwhile, the tower and the composite beam are considered as beam-column members to establish their limit state functions in the form of interaction equations. For the recognition of main failure modes in the system reliability, this paper proposes the concept of uniformity of the reliability index and the refinement strategy to improve the β-unzipping method, which can identify the main failure modes or neglect the unnecessary non-main failure modes. Finally, a certain steel-concrete composite beam cable-stayed bridge is used to verify the effectiveness of the proposed method.

Keywords: Cable-stayed bridge, Direct differentiation method, Interaction equation, Steel-concrete composite beams, Stochastic finite element method, System reliability, β-unzipping method.
Fulltext HTML PDF ePub
1800
1801
1802
1803
1804