RESEARCH ARTICLE


Passive Control Systems for the Blast Enhancement of Glazing Curtain Walls Under Explosive Loads



Chiara Bedon*, Claudio Amadio
University of Trieste, Department of Engineering and Architecture, Piazzale Europa 1, 34127 Trieste, Italy


Article Metrics

CrossRef Citations:
15
Total Statistics:

Full-Text HTML Views: 952
Abstract HTML Views: 342
PDF Downloads: 366
ePub Downloads: 162
Total Views/Downloads: 1822
Unique Statistics:

Full-Text HTML Views: 567
Abstract HTML Views: 243
PDF Downloads: 264
ePub Downloads: 142
Total Views/Downloads: 1216



Creative Commons License
© 2017 Bedon and Amadio

open-access license: This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0), a copy of which is available at: (https://creativecommons.org/licenses/by/4.0/legalcode). This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

* Address correspondence to this author at the University of Trieste, Department of Engineering and Architecture, Piazzale Europa 1, 34127 Trieste, Italy; Tel: +39 040 558 3837; E-mail: bedon@dicar.units.it


Abstract

Glass curtain walls are used in modern buildings as envelopes for wide surfaces due to a multitude of aspects. In glass curtain walls, tensile brittle panels are connected - through mechanical or adhesive joints - with steel frameworks or aluminum bracing systems, and due to the interaction of several structural components, the behaviour of the so assembled system is complex to predict, especially under exceptional loading conditions such as explosive events. In the paper, glazing curtain walls are investigated by means of Finite-Element (FE) numerical simulations, under the effect of air blast pressures of variable intensity. Their typical dynamic behaviour and criticalities under high-strain impact loads are first analyzed. By means of extended nonlinear dynamic FE parametric studies, innovative devices are applied to traditional curtain walls, at their support points, in order to improve their expected dynamic response. Two possible solutions, namely consisting of viscoelastic (VE) or elasto-plastic (PL) dampers, are proposed as passive control systems for the mitigation of maximum effects in the façade components deriving from the incoming blast pressures. As shown, although characterized by specific intrinsic mechanical behaviours, either VE or PL dampers can offer beneficial structural effects. In the first case, major advantages for the façade components derive from the additional flexibility and damping capacities of VE devices. In the latter case, PL dampers introduce additional plastic energy dissipation in the traditional curtain wall assembly, hence allowing preventing severe damage in the glazing components. It is thus expected that the current outcomes could represent a valid background for further experimental validation as well as detailed assessment and optimization of the proposed design concept.

Keywords: Glazing curtain walls, Air blast loading, Energy dissipation, Passive control systems, Viscoelastic devices, Elasto-plastic devices, Finite-Element numerical modelling.