RESEARCH ARTICLE


Assessing the Dynamic Behaviour of Midrise Frame Structures Sitting on Silty Sandy Soil



Sahar Ismail1, *, Fouad Kaddah1, Wassim Raphael1
1 Department of Civil Engineering, Saint Joseph University of Beirut, Beirut, Lebanon


Article Metrics

CrossRef Citations:
4
Total Statistics:

Full-Text HTML Views: 1040
Abstract HTML Views: 407
PDF Downloads: 273
Total Views/Downloads: 1720
Unique Statistics:

Full-Text HTML Views: 563
Abstract HTML Views: 284
PDF Downloads: 220
Total Views/Downloads: 1067



Creative Commons License
© 2020 Ismail et al.

open-access license: This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0), a copy of which is available at: https://creativecommons.org/licenses/by/4.0/legalcode. This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

* Address correspondence to this author at Department of Civil Engineering, Saint Joseph University of Beirut, Beirut, Lebanon; E-mail: sahar.ismail@net.usj.edu.lb


Abstract

Background:

Midrise 5 to 15 storeys frame structures sitting on soft soils are susceptible to damage induced by seismic events. The level of damage is related to the interaction between the structure, foundation and soil called Soil Structure Interaction (SSI). If the level of ground acceleration is low, the wave gets amplified putting the structure at risk of collapse.

Objective and Methods:

Concerns about SSI have motivated several researchers to investigate the seismic behaviour of structures rested on cohesive and cohesionless soils. The objective of the work presented in this paper is to evaluate the effects of several parameters on the seismic soil structure interaction behaviour of midrise structures sitting on silty sandy soil. Using ABAQUS, reliable 3D models of 5 to 15 storeys midrise concrete frame structures rested on raft foundation were built. The effects of the structure’s number of storeys, raft size and thickness were explored for different column sizes. Fixed-based structures which capture the model adopted in seismic codes and flexible-based structures were hit at the bottom by El-Centro (1940) and Northridge (1994) earthquakes.

Results and Conclusion:

The results, presented in terms of storey lateral deflection, inter-storey drift, shear force, foundation rocking and response spectrum showed the important contribution of SSI effects on the behaviour of the midrise structures. The model analyses indicated that column size strongly affects the behaviour of flexible structures. Let N be the structure number of storeys and C the column size. The results showed that in terms of storey lateral deflection and levelling shear force, for column sizes C 0.5 X 0.5 m, SSI was detrimental to structures with 10 ≤ N ≤ 15 and beneficial to structures with 5 ≤ N <10. Increasing the column size to C 0.5 X 1 m showed that SSI became detrimental for structures with 10 < N ≤ 15 under El-Centro (1940) and for structures with 7≤ N ≤ 15 under Northridge (1994), and beneficial for structures with 5 ≤ N ≤ 10 under El-Centro (1940) and for structures with 5 ≤ N < 7 under Northridge (1994). The FE results showed that even though base shear increased with raft size, lateral deflections were amplified for C 0.5 X 0.5 m S15 structures and attenuated for C 0.5 X 1 m S15 structures. However, the seismic response of S15 structures was slightly affected by the variation in raft thickness under both column sizes. Finally, the paper includes a discussion and evaluation of the contribution of inertial and kinematic effects, including soil types used on the simulated numerical models’ seismic responses.

Keywords: ABAQUS, Soil structure interaction, Silty sandy soil, Inelastic seismic response, Fully nonlinear method, Midrise moment resisting frames.