All published articles of this journal are available on ScienceDirect.
Experimental Investigation and Modelling of Carbonation Process in Cement Materials
Abstract
Cement mortar and cement paste samples were prepared and subjected to accelerated carbonation test at 20°C, 65% humidity relative, 20% or 50% concentration of CO2. The carbonation depth was determined using classical phenolphthalein test. The mass fractions of Ca(OH)2 and CaCO3 were calculated from thermogravimetric analysis. We studied different factors that influence the carbonation process such as: concentration of CO2, type of material, surface exposure to CO2, porosity accessible to water, duration of carbonation. Based on the experimental results, a numerical simulation was developed to predict the carbonation depth. This physicochemical and deterministic model relies upon a detailed description of the carbonation mechanism as it takes into account the chemical kinetics, the microstructural and hydrous evolutions induced.