Low Cost Frictional Seismic Base-Isolation of Residential New Masonry Buildings in Developing Countries: A Small Masonry House Case Study

Ahmad Basshofi Habieb1, *, Gabriele Milani1, Tavio Tavio2, Federico Milani3
1 Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milan, Italy
2 Dept. of Civil Engineering, Institut Teknologi Sepuluh Nopember, 60111 Surabaya, Indonesia
3 Chem. Co Consultant, Via J.F.Kennedy 2, 45030 Occhiobello (RO), Italy

Article Metrics

CrossRef Citations:
Total Statistics:

Full-Text HTML Views: 2291
Abstract HTML Views: 1092
PDF Downloads: 761
ePub Downloads: 543
Total Views/Downloads: 4687
Unique Statistics:

Full-Text HTML Views: 1318
Abstract HTML Views: 693
PDF Downloads: 377
ePub Downloads: 200
Total Views/Downloads: 2588

Creative Commons License
© 2017 Habieb et al.

open-access license: This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0), a copy of which is available at: This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

* Address correspondence to this author at the Technical University of Milan, Department of Architecture, Built Environment and Construction Engineering, Piazza Leonardo da Vinci 32, 20133 Milan, Italy; Tel: +39 3495516064; E-mail:



An advanced Finite Element model is presented to examine the performance of a low-cost friction based-isolation system in reducing the seismic vulnerability of low-class rural housings. This study, which is mainly numerical, adopts as benchmark an experimental investigation on a single story masonry system eventually isolated at the base and tested on a shaking table in India.


Four friction isolation interfaces, namely, marble-marble, marble-high-density polyethylene, marble-rubber sheet, and marble-geosynthetic were involved. Those interfaces differ for the friction coefficient, which was experimentally obtained through the aforementioned research. The FE model adopted here is based on a macroscopic approach for masonry, which is assumed as an isotropic material exhibiting damage and softening. The Concrete damage plasticity (CDP) model, that is available in standard package of ABAQUS finite element software, is used to determine the non-linear behavior of the house under non-linear dynamic excitation.

Results and Conclusion:

The results of FE analyses show that the utilization of friction isolation systems could much decrease the acceleration response at roof level, with a very good agreement with the experimental data. It is also found that systems with marble-marble and marble-geosynthetic interfaces reduce the roof acceleration up to 50% comparing to the system without isolation. Another interesting result is that there was little damage appearing in systems with frictional isolation during numerical simulations. Meanwhile, a severe state of damage was clearly visible for the system without isolation.

Keywords: Friction base-isolation, Rural housing, Masonry, Concrete damage plasticity, Peak ground acceleration, Low cost.