All published articles of this journal are available on ScienceDirect.

RESEARCH ARTICLE

Intelligent Computing Based Formulas to Predict the Settlement of Shallow Foundations on Cohesionless Soils

The Open Civil Engineering Journal 20 Feb 2019 RESEARCH ARTICLE DOI: 10.2174/1874149501913010001

Abstract

Introduction:

Although it is a regular duty of geotechnical engineers to evaluate how much shallow foundation settles in the granular soil, there is no well-approved formula for this task. The intent of this research is to develop a formula that is adequately simple to be used in routine geotechnical engineering work but complete enough to address the behavior of granular soil associated with the settlement issue.

Methods:

Cone penetration test and foundation load test data were used to generate a formula that can predict the settlement. Genetic Programming (GP) based Symbolic Regression (GP-SR) and artificial neural networks were used to develop an optimized formula. Settlements were also calculated using the finite method and compared to the results of the developed formula.

Results and Conclusion:

Two formulas were developed using SR, and several models were developed using ANN. ANN model 1 has the highest R2 value (0.93) and the lowest MSE (0.16) among all developed ANN and GP-SR models. FEM settlements were almost double the measured ones in some instances.

Keywords: Granular Soil, CPT, Settlements, Intelligent Computing, GP-SR, SPT.
Fulltext HTML PDF ePub
1800
1801
1802
1803
1804