Experimental and Numerical Analyses of Steel-concrete Composite Floors

Antonella B. Francavilla1, *, Massimo Latour1, Gianvittorio Rizzano1
1 Department of Civil Engineering, University of Salerno, Salerno, Italy

Article Metrics

CrossRef Citations:
Total Statistics:

Full-Text HTML Views: 1858
Abstract HTML Views: 724
PDF Downloads: 584
Total Views/Downloads: 3166
Unique Statistics:

Full-Text HTML Views: 718
Abstract HTML Views: 348
PDF Downloads: 413
Total Views/Downloads: 1479

Creative Commons License
© 2020 Francavilla et al.

open-access license: This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0), a copy of which is available at: ( This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

* Address correspondence to this author at the Department of Civil Engineering, University of Salerno, Salerno, Italy; Tel: +39 089964342, +39 3287482186; E-mail:



The performances of composite steel-concrete slabs are strongly influenced by the connection between the concrete and the steel decking, which is essentially assured by bonding, interlocking, and adhesion. The connection can be continuous or localized by means of connectors. In order to increase the bonding between steel and concrete elements and to allow their collaboration, typically, a continuous connection with indentations or embossings is realized.


In this study, the simulation of the concrete-steel bond interaction of a typical composite decking is analyzed. In particular, the objective is the investigation of the role of the main geometric parameters of the indentations or embossings that determine the effective functionality of the connection.


To this scope, the results of four-point bending tests on five specimens of a typical layout of a composite floor are reported and discussed. Then, the obtained results are used to determine the shear bond strength according to the partial interaction method, by following the procedure provided by the Eurocode 4. Successively, the experimental results are exploited in order to calibrate a FE model in Abaqus software to be able to account for the basic effects involved in the shear bonding mechanism, i.e. interlocking, friction, and adhesion.

Results & Conclusion:

Finally, the obtained results are discussed, and the FE model is used to evaluate the geometrical and mechanical parameters influencing the longitudinal shear bonding resistance.

Keywords: FEM models, Experimental tests, Sheeting-concrete interaction, Composite floor, Metal decks, Steel-concrete slabs.